Towards a Probabilistic Framework for Analyzing and Improving LLM-Enabled Software
- URL: http://arxiv.org/abs/2501.06370v1
- Date: Fri, 10 Jan 2025 22:42:06 GMT
- Title: Towards a Probabilistic Framework for Analyzing and Improving LLM-Enabled Software
- Authors: Juan Manuel Baldonado, Flavia Bonomo-Braberman, Víctor Adrián Braberman,
- Abstract summary: Large language model (LLM)-enabled systems are a significant challenge in software engineering.
We propose a probabilistic framework for systematically analyzing and improving these systems.
We apply the framework to the autoformalization problem, where natural language documentation is transformed into formal program specifications.
- Score: 0.0
- License:
- Abstract: Ensuring the reliability and verifiability of large language model (LLM)-enabled systems remains a significant challenge in software engineering. We propose a probabilistic framework for systematically analyzing and improving these systems by modeling and refining distributions over clusters of semantically equivalent outputs. This framework facilitates the evaluation and iterative improvement of Transference Models -- key software components that utilize LLMs to transform inputs into outputs for downstream tasks. To illustrate its utility, we apply the framework to the autoformalization problem, where natural language documentation is transformed into formal program specifications. Our case illustrates how probabilistic analysis enables the identification of weaknesses and guides focused alignment improvements, resulting in more reliable and interpretable outputs. This principled approach offers a foundation for addressing critical challenges in the development of robust LLM-enabled systems.
Related papers
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.
We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - A Soft Sensor Method with Uncertainty-Awareness and Self-Explanation Based on Large Language Models Enhanced by Domain Knowledge Retrieval [17.605817344542345]
We propose a framework called Few-shot Uncertainty-aware and self-Explaining Soft Sensor (LLM-FUESS)
LLM-FUESS includes the Zero-shot Auxiliary Variable Selector (LLM-ZAVS) and the Uncertainty-aware Few-shot Soft Sensor (LLM-UFSS)
Our method achieved state-of-the-art predictive performance, strong robustness, and flexibility, effectively mitigates training instability found in traditional methods.
arXiv Detail & Related papers (2025-01-06T11:43:29Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
We present FVEval, the first comprehensive benchmark for characterizing large language models (LLMs) performance in tasks pertaining to formal verification (FV)
The benchmark consists of three sub-tasks that measure LLM capabilities at different levels.
We present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with FV.
arXiv Detail & Related papers (2024-10-15T21:48:57Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Aligning with Logic: Measuring, Evaluating and Improving Logical Preference Consistency in Large Language Models [31.558429029429863]
Large Language Models (LLMs) are expected to be predictable and trustworthy to support reliable decision-making systems.
This work examines logical preference consistency as a foundational requirement for building more dependable LLM systems.
We show that improving consistency leads to better performance in LLM-driven logic-based algorithms.
arXiv Detail & Related papers (2024-10-03T04:34:04Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - OSM: Leveraging Model Checking for Observing Dynamic 1 behaviors in
Aspect-Oriented Applications [0.0]
observe-based statistical model-checking (OSM) framework devised to craft executable formal models directly from foundational system code.
This ensures the unyielding performance of electronic health record systems amidst shifting preconditions.
arXiv Detail & Related papers (2024-03-03T00:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.