論文の概要: Qffusion: Controllable Portrait Video Editing via Quadrant-Grid Attention Learning
- arxiv url: http://arxiv.org/abs/2501.06438v1
- Date: Sat, 11 Jan 2025 04:56:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:43.732805
- Title: Qffusion: Controllable Portrait Video Editing via Quadrant-Grid Attention Learning
- Title(参考訳): Qffusion:Quadrant-Grid Attention Learningによるコントロール可能な画像編集
- Authors: Maomao Li, Lijian Lin, Yunfei Liu, Ye Zhu, Yu Li,
- Abstract要約: Qffusionは、ポートレートビデオ編集のためのデュアルフレーム誘導フレームワークである。
2つの静止画像からQffusionを一般的なアニメーションフレームワークとして訓練する。
Qffusionは、ポートレートビデオ編集における最先端技術よりも一貫して優れている。
- 参考スコア(独自算出の注目度): 25.752198077700157
- License:
- Abstract: This paper presents Qffusion, a dual-frame-guided framework for portrait video editing. Specifically, we consider a design principle of ``animation for editing'', and train Qffusion as a general animation framework from two still reference images while we can use it for portrait video editing easily by applying modified start and end frames as references during inference. Leveraging the powerful generative power of Stable Diffusion, we propose a Quadrant-grid Arrangement (QGA) scheme for latent re-arrangement, which arranges the latent codes of two reference images and that of four facial conditions into a four-grid fashion, separately. Then, we fuse features of these two modalities and use self-attention for both appearance and temporal learning, where representations at different times are jointly modeled under QGA. Our Qffusion can achieve stable video editing without additional networks or complex training stages, where only the input format of Stable Diffusion is modified. Further, we propose a Quadrant-grid Propagation (QGP) inference strategy, which enjoys a unique advantage on stable arbitrary-length video generation by processing reference and condition frames recursively. Through extensive experiments, Qffusion consistently outperforms state-of-the-art techniques on portrait video editing.
- Abstract(参考訳): 本稿では,ポートレートビデオ編集のためのデュアルフレーム誘導フレームワークであるQffusionについて述べる。
具体的には、「編集のためのアニメーション」の設計原則を考察し、Qffusionを2つの静止画像から一般的なアニメーションのフレームワークとして訓練する一方、修正された開始フレームと終了フレームを推論中に参照として適用することで、容易に肖像画編集に使用することができる。
安定拡散の強力な生成力を生かして,2つの参照画像と4つの顔条件の潜時符号を別々に4グリッド方式に配置する,潜時再構成のためのQGA方式を提案する。
そして,これら2つのモダリティの特徴を融合させ,外見と時間的学習の両方に自己注意を用いて,異なる時刻の表現をQGAの下で共同でモデル化する。
我々のQffusionは、新たなネットワークや複雑な訓練段階を使わずに安定したビデオ編集が可能であり、安定拡散の入力形式のみが修正される。
さらに,参照フレームと条件フレームを再帰的に処理することで,安定な任意長ビデオ生成に独特な優位性をもたらすQuadrant-Grid Propagation (QGP) 推論戦略を提案する。
広範な実験を通じて、Qffusionは、ポートレートビデオ編集における最先端技術よりも一貫して優れている。
関連論文リスト
- Portrait Video Editing Empowered by Multimodal Generative Priors [39.747581584889495]
マルチモーダルプロンプトを用いた一貫した表現型スタイリングを実現する強力なポートレートビデオ編集手法であるPortraitGenを紹介する。
提案手法は,大規模2次元生成モデルから抽出した知識によるマルチモーダル入力を取り入れたものである。
また,表情類似性指導と顔認識画像編集モジュールを内蔵し,反復的データセット更新に伴う劣化問題を効果的に軽減する。
論文 参考訳(メタデータ) (2024-09-20T15:45:13Z) - COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
ビデオ編集は新たな課題であり、現在のほとんどの手法では、ソースビデオを編集するために、事前訓練されたテキスト・トゥ・イメージ(T2I)拡散モデルを採用している。
我々は,高品質で一貫したビデオ編集を実現するために,COVE(Cor correspondingence-guided Video Editing)を提案する。
COVEは、追加のトレーニングや最適化を必要とせずに、事前訓練されたT2I拡散モデルにシームレスに統合することができる。
論文 参考訳(メタデータ) (2024-06-13T06:27:13Z) - I2VEdit: First-Frame-Guided Video Editing via Image-to-Video Diffusion Models [18.36472998650704]
本稿では,1フレームからビデオ全体への編集を事前学習した画像対ビデオモデルを用いてプロパガンダすることで,画像編集ツールをビデオに適用可能にする,新しい汎用的ソリューションを提案する。
I2VEditと呼ばれる本手法は,編集範囲に応じて映像の視覚的・運動的整合性を適応的に保持する。
論文 参考訳(メタデータ) (2024-05-26T11:47:40Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
本研究では,空間制御に基づく幾何学的操作に着目し,様々な視点にまたがって編集プロセスを統合する手法を提案する。
編集画像の内部クエリ機能に基づいて訓練されたニューラルラジアンス場QNeRFを紹介する。
拡散時間の経過とともにクエリをよりよく統合する、プログレッシブで反復的な手法により、プロセスを洗練します。
論文 参考訳(メタデータ) (2024-02-22T18:50:18Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - StableVideo: Text-driven Consistency-aware Diffusion Video Editing [24.50933856309234]
拡散に基づく手法は、リアルな画像やビデオを生成することができるが、ビデオ内の既存のオブジェクトを編集するのに苦労し、その外観は時間の経過とともに保たれる。
本稿では、既存のテキスト駆動拡散モデルへの時間的依存を導入し、編集対象に対して一貫した外観を生成する。
我々は,この機構,すなわちStableVideoに基づくテキスト駆動のビデオ編集フレームワークを構築し,一貫性を意識したビデオ編集を実現する。
論文 参考訳(メタデータ) (2023-08-18T14:39:16Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
本稿では,動画に画像モデルを適用するための新しいテキスト誘導型動画翻訳フレームワークを提案する。
我々のフレームワークは,グローバルなスタイルと局所的なテクスチャの時間的一貫性を低コストで実現している。
論文 参考訳(メタデータ) (2023-06-13T17:52:23Z) - Video-P2P: Video Editing with Cross-attention Control [68.64804243427756]
Video-P2Pは、クロスアテンション制御による現実世界のビデオ編集のための新しいフレームワークである。
Video-P2Pは、オリジナルのポーズやシーンを最適に保存しながら、新しいキャラクターを生成する現実世界のビデオでうまく機能する。
論文 参考訳(メタデータ) (2023-03-08T17:53:49Z) - Diffusion Video Autoencoders: Toward Temporally Consistent Face Video
Editing via Disentangled Video Encoding [35.18070525015657]
拡散オートエンコーダに基づく新しい顔映像編集フレームワークを提案する。
我々のモデルは拡散モデルに基づいており、再構築と編集の両方を同時に行うことができる。
論文 参考訳(メタデータ) (2022-12-06T07:41:51Z) - Task-agnostic Temporally Consistent Facial Video Editing [84.62351915301795]
タスクに依存しない、時間的に一貫した顔画像編集フレームワークを提案する。
3次元再構成モデルに基づいて,本フレームワークはより統一的で不整合な方法で複数の編集タスクを処理するように設計されている。
現状の顔画像編集法と比較すると,本フレームワークはより写実的で時間的に滑らかな映像像を生成する。
論文 参考訳(メタデータ) (2020-07-03T02:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。