論文の概要: Sequential Portfolio Selection under Latent Side Information-Dependence Structure: Optimality and Universal Learning Algorithms
- arxiv url: http://arxiv.org/abs/2501.06701v2
- Date: Mon, 20 Jan 2025 03:16:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:14:28.420776
- Title: Sequential Portfolio Selection under Latent Side Information-Dependence Structure: Optimality and Universal Learning Algorithms
- Title(参考訳): 潜時側情報依存構造に基づく逐次ポートフォリオ選択:最適化とユニバーサル学習アルゴリズム
- Authors: Duy Khanh Lam,
- Abstract要約: 従属構造と市場情報の完全な知識に基づいてポートフォリオを形成する動的な戦略は、一定戦略よりも無限に高い速度で成長しない可能性があることを示す。
動的戦略に対する制限的な成長速度がなければ,ランダムな最適定数戦略がほぼ確実に存在することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates the investment problem of constructing an optimal no-short sequential portfolio strategy in a market with a latent dependence structure between asset prices and partly unobservable side information, which is often high-dimensional. The results demonstrate that a dynamic strategy, which forms a portfolio based on perfect knowledge of the dependence structure and full market information over time, may not grow at a higher rate infinitely often than a constant strategy, which remains invariant over time. Specifically, if the market is stationary, implying that the dependence structure is statistically stable, the growth rate of an optimal dynamic strategy, utilizing the maximum capacity of the entire market information, almost surely decays over time into an equilibrium state, asymptotically converging to the growth rate of a constant strategy. Technically, this work reassesses the common belief that a constant strategy only attains the optimal limiting growth rate of dynamic strategies when the market process is identically and independently distributed. By analyzing the dynamic log-optimal portfolio strategy as the optimal benchmark in a stationary market with side information, we show that a random optimal constant strategy almost surely exists, even when a limiting growth rate for the dynamic strategy does not. Consequently, two approaches to learning algorithms for portfolio construction are discussed, demonstrating the safety of removing side information from the learning process while still guaranteeing an asymptotic growth rate comparable to that of the optimal dynamic strategy.
- Abstract(参考訳): 本稿では、資産価格と、しばしば高次元となる部分的には観測不能な側情報との間に潜伏する構造を持つ市場において、最適な非ショート・シーケンシャルなポートフォリオ戦略を構築する際の投資問題について検討する。
その結果、依存構造と市場情報の完全な知識に基づいてポートフォリオを形成する動的な戦略は、一定戦略よりも無限に高い速度で成長しない可能性が示唆された。
特に、市場が定常的であり、従属構造が統計的に安定であることを意味する場合、市場情報全体の最大容量を利用する最適な動的戦略の成長速度は、時間とともにほぼ確実に平衡状態に崩壊し、漸近的に一定の戦略の成長速度に収束する。
技術的には、この研究は、市場プロセスが同一かつ独立に分散されているとき、一定の戦略が動的戦略の最適な限界成長速度しか達成できないという共通の信念を再評価する。
動的対数最適ポートフォリオ戦略を定常市場における最適ベンチマークとして分析することにより、動的戦略の限界成長率がなければ、ランダムな最適定数戦略がほぼ確実に存在することを示す。
その結果、ポートフォリオ構築のための学習アルゴリズムの2つのアプローチが議論され、最適な動的戦略と同等の漸近的な成長速度を保証しつつ、学習プロセスからサイド情報を除去する安全性が示された。
関連論文リスト
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
本稿では、データを徐々に、そして継続的に明らかにする視点を採用する。
提案された戦略の性能は特定の市場で保証される。
定常市場及びエルゴード市場では、投資中の過去の市場情報に基づいて、真の条件分布を利用するいわゆるベイズ戦略は、実証的効用、シャープ比、成長率の観点からは、ほぼ確実に、条件分布に依存しない。
論文 参考訳(メタデータ) (2024-06-19T12:11:42Z) - Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms [0.0]
本稿では、長期的富という観点から個別の戦略を上回るために、逐次的ポートフォリオのための複数の戦略をまとめることの問題点について考察する。
我々は,市場条件にかかわらず,戦略を組み合わせるための新たな意思決定枠組みを導入する。
シャープ比の小さなトレードオフがあるにもかかわらず、提案した戦略を支持する結果を示す。
論文 参考訳(メタデータ) (2024-06-05T23:08:57Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Robust Utility Optimization via a GAN Approach [3.74142789780782]
本稿では,堅牢なユーティリティ最適化問題を解決するために,GAN(Generative Adversarial Network)アプローチを提案する。
特に、投資家と市場の両方をニューラルネットワーク(NN)でモデル化し、ミニマックスゼロサムゲームでトレーニングする。
論文 参考訳(メタデータ) (2024-03-22T14:36:39Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Spatio-Temporal Momentum: Jointly Learning Time-Series and
Cross-Sectional Strategies [3.351714665243138]
我々は, 時間的・時間的モーメント戦略を導入し, 時間とともにその断続的なモーメント特性に基づいて, 取引資産による時間的・断続的なモーメント戦略を統一する。
このモデルでは,高トランザクションコストの存在下で,ベンチマークよりもパフォーマンスを維持可能であることを実証する。
特に、最小限の縮小とターンオーバー正規化と組み合わせた場合、さまざまなトランザクションコストシナリオに対して最高のパフォーマンスが得られることが判明した。
論文 参考訳(メタデータ) (2023-02-20T18:59:05Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
本稿では,対戦型マルチエージェントRLの最も基本的な設定,すなわち2プレーヤゼロサムマルコフゲームに焦点を当てる。
両エージェントから対称更新を施した単一ループポリシー最適化手法を提案し,この手法はエントロピー規則化楽観的乗算重み更新法(OMWU)によって更新される。
我々の収束結果は、最もよく知られた複雑性を改善し、競合するマルコフゲームにおけるポリシー最適化をよりよく理解する。
論文 参考訳(メタデータ) (2022-10-03T16:05:43Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z) - Time your hedge with Deep Reinforcement Learning [0.0]
深層強化学習(DRL)は、市場情報とヘッジ戦略の割り当て決定の間のダイナミックな依存関係を作成することで、この課題に対処することができる。
i)行動決定に追加の文脈情報を使用し、(ii)共通の資産運用者の1日のラグ転倒を考慮し、ヘッジの再均衡を図るための観察と行動の間に1期間の遅れがあり、(iii)アンカードウォークフォワードトレーニングと呼ばれる反復的な試験方法により、安定性とロバスト性の観点から完全にテストされており、(iv)時系列のkフォールドクロスバリデーションと同様に、ヘッジの活用を可能にする。
論文 参考訳(メタデータ) (2020-09-16T06:43:41Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。