論文の概要: MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2501.06713v1
- Date: Sun, 12 Jan 2025 04:44:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 21:19:24.933213
- Title: MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
- Title(参考訳): MiniRAG: 極端にシンプルな検索機能強化ジェネレーションを目指して
- Authors: Tianyu Fan, Jingyuan Wang, Xubin Ren, Chao Huang,
- Abstract要約: MiniRAG(ミニラグ)は、極端に単純で効率的に設計された新規なレトリーバル拡張世代(RAG)システムである。
MiniRAGは,(1)テキストチャンクと名前付きエンティティを統一構造に結合し,複雑な意味理解への依存を軽減し,(2)高度な言語能力を必要としない効率的な知識発見のためにグラフ構造を利用する軽量なトポロジ強化検索手法を提案する。
- 参考スコア(独自算出の注目度): 22.512017529583332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
- Abstract(参考訳): 効率的で軽量なRetrieval-Augmented Generation (RAG)システムに対する需要が高まり、既存のRAGフレームワークにSmall Language Models (SLM)をデプロイする際の大きな課題が浮き彫りになっている。
現在のアプローチでは、SLMの限定的なセマンティック理解とテキスト処理機能により、リソース制約のあるシナリオで広く採用されるための障壁が生じるため、パフォーマンスが著しく低下している。
これらの基本的な制約に対処するために,極端に単純で効率の良い新しいRAGシステムであるMiniRAGを提案する。
MiniRAGは,(1)テキストチャンクと名前付きエンティティを統一構造に結合し,複雑な意味理解への依存を軽減し,(2)高度な言語能力を必要としない効率的な知識発見のためにグラフ構造を利用する軽量なトポロジ強化検索手法を提案する。
広範にわたる実験により,ストレージスペースの25%しか必要とせず,SLMを用いた場合においても,MiniRAGはLCM法に匹敵する性能を示した。
さらに,複雑なクエリを伴う現実的なオンデバイスシナリオ下での軽量RAGシステム評価のための包括的なベンチマークデータセットをコントリビュートする。
実装とデータセットを、https://github.com/HKUDS/MiniRAG.comで完全にオープンソースにしています。
関連論文リスト
- Simplifying Data Integration: SLM-Driven Systems for Unified Semantic Queries Across Heterogeneous Databases [0.0]
本稿では,Small Language Model(SLM)をベースとした,軽量な検索・拡張生成(RAG)とセマンティック・アウェアなデータ構造化の進歩を相乗化するシステムを提案する。
SLMを用いた構造化データ抽出にMiniRAGのセマンティック・アウェア・ヘテロジニアス・グラフインデックスとトポロジ・エンハンス・検索を統合し,従来の手法の限界に対処する。
実験結果は精度と効率性において優れた性能を示し、教師なし評価指標としてのセマンティックエントロピーの導入はモデルの不確実性に対する堅牢な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-08T03:28:03Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [0.0]
本稿では,動的検索戦略と強化微調整により,RAG(Retrieval-Augmented Generation)システムを強化する枠組みを提案する。
我々のフレームワークは2つの補完手法を統合している: Policy-d Retrieval Augmented Generation (PORAG)とAdaptive Token-Layer Attention Scoring (ATLAS)。
我々のフレームワークは幻覚を減らし、ドメイン固有の推論を強化し、従来のRAGシステムよりも優れた効率とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2025-04-02T01:16:10Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG)フレームワークはメタパス検索、イングラフテキスト、ベクトル検索を大規模言語モデルに統合する。
PKGはより豊かな知識表現を提供し、情報検索の精度を向上させる。
論文 参考訳(メタデータ) (2025-03-01T02:39:37Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) は、言語理解、画像理解、言語と画像の接点の相互作用を評価するためのクロスモーダルなタスクである。
2つの重要な特徴を持つ新しいRECデータセットを導入する。第一に、オブジェクトカテゴリ、属性、関係性に関する詳細な推論を必要とする、制御可能な難易度で設計されている。
第二に、微粒な編集によって生成された否定的なテキストと画像が組み込まれ、既存のターゲットを拒否するモデルの能力を明示的にテストする。
論文 参考訳(メタデータ) (2025-02-27T13:58:44Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - Simple is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
大きな言語モデル(LLM)は強い推論能力を示すが、幻覚や時代遅れの知識のような制限に直面している。
本稿では、サブグラフを検索する知識グラフ(KG)ベースのRetrieval-Augmented Generation(RAG)フレームワークを拡張するSubgraphRAGを紹介する。
提案手法は,高効率かつフレキシブルなサブグラフ検索を実現するために,並列3重装飾機構を備えた軽量多層パーセプトロンを革新的に統合する。
論文 参考訳(メタデータ) (2024-10-28T04:39:32Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) システムは、外部知識ソースを統合することで、大規模言語モデル(LLM)を強化する。
既存のRAGシステムには、フラットなデータ表現への依存やコンテキスト認識の欠如など、大きな制限がある。
テキストインデックスと検索プロセスにグラフ構造を組み込んだLightRAGを提案する。
論文 参考訳(メタデータ) (2024-10-08T08:00:12Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAGは、非パラメトリックメモリシステムによるエンボディエージェントのモデルを強化するフレームワークである。
コアとなるEmbodied-RAGのメモリはセマンティックフォレストとして構成され、言語記述を様々なレベルで詳細に保存する。
Embodied-RAGがRAGをロボット領域に効果的にブリッジし、200以上の説明とナビゲーションクエリをうまく処理できることを実証する。
論文 参考訳(メタデータ) (2024-09-26T21:44:11Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG)は、検索ツールを利用して外部データベースにアクセスする。
既存のRAGシステムは主に簡単な質問応答タスクに有効である。
本稿では,MemoRAGを提案する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。