論文の概要: Multi-Label Scene Classification in Remote Sensing Benefits from Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2501.06720v1
- Date: Sun, 12 Jan 2025 05:25:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:20.295128
- Title: Multi-Label Scene Classification in Remote Sensing Benefits from Image Super-Resolution
- Title(参考訳): 画像超解像からのリモートセンシング便益のマルチラベルシーン分類
- Authors: Ashitha Mudraje, Brian B. Moser, Stanislav Frolov, Andreas Dengel,
- Abstract要約: 超解像(SR)は、衛星画像の品質を高め、下流の分類性能を向上させるための前処理のステップである。
我々は,SRResNet,HAT,SeeSR,RealESRGANの4つのSRモデルについて検討し,それらがマルチラベルシーン分類に与える影響を評価する。
その結果,SRの適用により,様々な指標の下流分類性能が大幅に向上することが示唆された。
- 参考スコア(独自算出の注目度): 6.895369651939212
- License:
- Abstract: Satellite imagery is a cornerstone for numerous Remote Sensing (RS) applications; however, limited spatial resolution frequently hinders the precision of such systems, especially in multi-label scene classification tasks as it requires a higher level of detail and feature differentiation. In this study, we explore the efficacy of image Super-Resolution (SR) as a pre-processing step to enhance the quality of satellite images and thus improve downstream classification performance. We investigate four SR models - SRResNet, HAT, SeeSR, and RealESRGAN - and evaluate their impact on multi-label scene classification across various CNN architectures, including ResNet-50, ResNet-101, ResNet-152, and Inception-v4. Our results show that applying SR significantly improves downstream classification performance across various metrics, demonstrating its ability to preserve spatial details critical for multi-label tasks. Overall, this work offers valuable insights into the selection of SR techniques for multi-label prediction in remote sensing and presents an easy-to-integrate framework to improve existing RS systems.
- Abstract(参考訳): 衛星画像は、多くのリモートセンシング(RS)応用の基盤となっているが、空間分解能の制限は、特に高レベルの詳細と特徴の区別を必要とするため、そのようなシステムの精度を阻害することが多い。
本研究では,衛星画像の品質を向上し,下流の分類性能を向上させるために,画像超解法(SR)を前処理ステップとして有効性を検討する。
本研究では,SRResNet,HAT,SeeSR,RealESRGANの4つのSRモデルについて検討し,ResNet-50,ResNet-101,ResNet-152,Inception-v4などのCNNアーキテクチャにおけるマルチラベルシーン分類への影響を評価する。
以上の結果から,SRの適用により,様々な指標の下流分類性能が大幅に向上し,マルチラベルタスクにおいて重要な空間的詳細を保存できることが示唆された。
全体として、この研究は、リモートセンシングにおけるマルチラベル予測のためのSRテクニックの選択に関する貴重な洞察を提供し、既存のRSシステムを改善するための容易な統合フレームワークを提供する。
関連論文リスト
- Sewer Image Super-Resolution with Depth Priors and Its Lightweight Network [11.13549330516683]
クイックビュー(QV)技術は下水道システム内の欠陥を検出する主要な方法である。
超解像度は画像品質を改善する効果的な方法であり、様々な場面で応用されている。
本研究では, DSRNet で表される新しい深層誘導参照型超解法フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-27T14:45:34Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
論文 参考訳(メタデータ) (2024-05-11T16:06:16Z) - An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution [0.5461938536945723]
チャネル・アンド・スペースアテンション特徴抽出(CSA-FE)と呼ばれる高度な特徴抽出モジュールを提案する。
提案手法は,高頻度情報を含む特定のチャネルや空間的位置に着目し,関連する特徴に焦点を合わせ,無関係な特徴を抑えるのに役立つ。
本モデルは,既存モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-07T18:15:51Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - CiaoSR: Continuous Implicit Attention-in-Attention Network for
Arbitrary-Scale Image Super-Resolution [158.2282163651066]
本稿ではCiaoSRと呼ばれる連続的な暗黙の注意-注意ネットワークを提案する。
我々は、周辺地域の特徴のアンサンブル重みを学習するために、暗黙の注意ネットワークを明示的に設計する。
我々は、この暗黙の注意ネットワークにスケールアウェアの注意を埋め込んで、追加の非ローカル情報を活用する。
論文 参考訳(メタデータ) (2022-12-08T15:57:46Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
本稿では、転送学習技術とマルチヘッドアテンションスキームを活用した、深層学習に基づくRSISCフレームワークを提案する。
提案したディープラーニングフレームワークは、ベンチマークNWPU-RESISC45データセットに基づいて評価され、最高の分類精度94.7%を達成する。
論文 参考訳(メタデータ) (2022-06-20T10:05:38Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
我々は、TSNetと呼ばれる品質予測のためのテキスト情報と構造情報を共同で探索するデュアルストリームネットワークを開発した。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発する。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
論文 参考訳(メタデータ) (2022-05-27T09:20:06Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
光リモートセンシング画像(RSI-SOD)における有能な物体検出は、いまだに課題である。
本稿では, RSI-SOD における複数コンテンツの相補性を検討するために, MCCNet (Multi-Content Complementation Network) を提案する。
MCCMでは、前景機能、エッジ機能、背景機能、グローバル画像レベル機能など、RSI-SODにとって重要な複数の機能について検討する。
論文 参考訳(メタデータ) (2021-12-02T04:46:40Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
イメージスーパーレゾリューション(sr)は、低解像度光センサの画質を向上させる有望な技術である。
本稿では,安価なチャネル(可視・深度)からの補完情報を活用して,少ないパラメータを用いて高価なチャネル(熱)の画像品質を向上させる。
論文 参考訳(メタデータ) (2020-12-07T02:15:28Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。