論文の概要: Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach
- arxiv url: http://arxiv.org/abs/2501.06878v1
- Date: Sun, 12 Jan 2025 17:24:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 19:20:13.347758
- Title: Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach
- Title(参考訳): 不確かさを意識したオンライン外部校正:コンフォーマル予測アプローチ
- Authors: Mathieu Cocheteux, Julien Moreau, Franck Davoine,
- Abstract要約: 我々はモンテカルロ・ドロップアウトとコンフォーマル予測を組み合わせた不確実性認識をオンラインキャリブレーションに統合する最初のアプローチを提案する。
本研究では,様々な視覚センサの種類にまたがって有効性を示し,測定値を用いて測定を行い,間隔の効率と信頼性を評価する。
動的環境におけるセンサ融合の堅牢性を大幅に向上させることができるキャリブレーション推定の信頼性に関する知見を提供する。
- 参考スコア(独自算出の注目度): 4.683612295430957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate sensor calibration is crucial for autonomous systems, yet its uncertainty quantification remains underexplored. We present the first approach to integrate uncertainty awareness into online extrinsic calibration, combining Monte Carlo Dropout with Conformal Prediction to generate prediction intervals with a guaranteed level of coverage. Our method proposes a framework to enhance existing calibration models with uncertainty quantification, compatible with various network architectures. Validated on KITTI (RGB Camera-LiDAR) and DSEC (Event Camera-LiDAR) datasets, we demonstrate effectiveness across different visual sensor types, measuring performance with adapted metrics to evaluate the efficiency and reliability of the intervals. By providing calibration parameters with quantifiable confidence measures, we offer insights into the reliability of calibration estimates, which can greatly improve the robustness of sensor fusion in dynamic environments and usefully serve the Computer Vision community.
- Abstract(参考訳): 正確なセンサーキャリブレーションは自律システムには不可欠だが、その不確実性の定量化は未解明のままである。
本稿では,モンテカルロ・ドロップアウトとコンフォーマル予測を組み合わせたオンライン外部キャリブレーションに不確実性認識を統合するための最初のアプローチを提案する。
提案手法は,ネットワークアーキテクチャと互換性のある,不確実な定量化を伴う既存のキャリブレーションモデルを改善するためのフレームワークを提案する。
KITTI (RGB Camera-LiDAR) と DSEC (Event Camera-LiDAR) のデータセットで検証し、異なる視覚センサタイプ間での有効性を実証し、適応したメトリクスを用いて性能を測定し、間隔の効率性と信頼性を評価する。
キャリブレーションパラメータを定量化することで,動的環境におけるセンサ融合の堅牢性を大幅に向上し,コンピュータビジョンコミュニティに有用なキャリブレーション推定の信頼性に関する洞察を提供する。
関連論文リスト
- UAC: Uncertainty-Aware Calibration of Neural Networks for Gesture Detection [20.98523779846244]
IMUデータからジェスチャー確率とそれに関連する不確実性の両方を予測する不確実性認識型ジェスチャーネットワークアーキテクチャを提案する。
この不確実性は、各潜在的なジェスチャーの確率を調整するために使用される。
本手法は,ジェスチャ検出のために利用可能な3つのIMUデータセットを用いて評価し,ニューラルネットワークの3つの最先端キャリブレーション手法と比較した。
論文 参考訳(メタデータ) (2025-04-02T21:40:01Z) - Cal or No Cal? -- Real-Time Miscalibration Detection of LiDAR and Camera Sensors [0.8437187555622164]
安全の観点からは、センサーのキャリブレーションは自動運転の鍵となる。
オンラインキャリブレーションは厳格なリアルタイムとリソースの制約を受ける。
校正パラメータの直接回帰から校正状態のバイナリ分類に焦点を移す誤校正検出フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-31T08:13:23Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors [22.39558434131574]
モデルキャリブレーションの代替視点として一貫性の概念を導入する。
本稿では,入力間の一貫性に基づいて信頼度を調整する,一貫性(CC)と呼ばれるポストホックキャリブレーション手法を提案する。
また,ロジットレベルでの摂動は計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-10-16T06:55:02Z) - ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
視覚中心のセマンティック占有予測は、自律運転において重要な役割を果たす。
カメラからのセマンティック占有率を予測するための信頼性を探求する研究は、まだ少ない。
本稿では,カメラによる占有ネットワークの信頼性向上を目的としたReliOccを提案する。
論文 参考訳(メタデータ) (2024-09-26T16:33:16Z) - Decoupling of neural network calibration measures [45.70855737027571]
本稿では,AUSE(Area Under Sparsification Error curve)測定値に焦点をあてて,異なるニューラルネットワークキャリブレーション尺度の結合について検討する。
本稿では,現行の手法は自由度を保ち,安全クリティカルな機能のホモログ化のユニークなモデルを妨げると結論付けている。
論文 参考訳(メタデータ) (2024-06-04T15:21:37Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
攻撃はキャリブレーションを著しく損なう可能性を示し, 対向的摂動下でのキャリブレーションにおける最悪のキャリブレーション境界として認定キャリブレーションを提案する。
我々は,新しいキャリブレーション攻撃を提案し,テクスタディバーショナルキャリブレーショントレーニングによりモデルキャリブレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2024-05-22T18:52:09Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
安全クリティカルなタスクにおける信頼性予測には、ディープニューラルネットワークの信頼性校正が不可欠である。
ミススキャリブレーションは、過信と/または過信をモデル化する。
校正点とクラス別校正点を同定するために,新しい校正点である校正点を導入する。
クラスワイドの誤校正スコアをプロキシとして使用して,過度かつ過度に対処可能な校正手法を設計する。
論文 参考訳(メタデータ) (2023-08-06T17:59:14Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。