論文の概要: Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors
- arxiv url: http://arxiv.org/abs/2410.12295v1
- Date: Wed, 16 Oct 2024 06:55:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:45.341143
- Title: Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors
- Title(参考訳): 整合性校正:摂食者の整合性による不整合性校正の改善
- Authors: Linwei Tao, Haolan Guo, Minjing Dong, Chang Xu,
- Abstract要約: モデルキャリブレーションの代替視点として一貫性の概念を導入する。
本稿では,入力間の一貫性に基づいて信頼度を調整する,一貫性(CC)と呼ばれるポストホックキャリブレーション手法を提案する。
また,ロジットレベルでの摂動は計算効率を著しく向上させることを示した。
- 参考スコア(独自算出の注目度): 22.39558434131574
- License:
- Abstract: Calibration is crucial in deep learning applications, especially in fields like healthcare and autonomous driving, where accurate confidence estimates are vital for decision-making. However, deep neural networks often suffer from miscalibration, with reliability diagrams and Expected Calibration Error (ECE) being the only standard perspective for evaluating calibration performance. In this paper, we introduce the concept of consistency as an alternative perspective on model calibration, inspired by uncertainty estimation literature in large language models (LLMs). We highlight its advantages over the traditional reliability-based view. Building on this concept, we propose a post-hoc calibration method called Consistency Calibration (CC), which adjusts confidence based on the model's consistency across perturbed inputs. CC is particularly effective in locally uncertainty estimation, as it requires no additional data samples or label information, instead generating input perturbations directly from the source data. Moreover, we show that performing perturbations at the logit level significantly improves computational efficiency. We validate the effectiveness of CC through extensive comparisons with various post-hoc and training-time calibration methods, demonstrating state-of-the-art performance on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet, as well as on long-tailed datasets like ImageNet-LT.
- Abstract(参考訳): キャリブレーションは、特に医療や自動運転などの分野において、意思決定において正確な信頼度推定が不可欠であるディープラーニングアプリケーションにおいて不可欠である。
しかし、ディープニューラルネットワークはしばしば誤校正に悩まされ、信頼性図と期待校正誤差(ECE)が校正性能を評価する唯一の標準視点である。
本稿では,大言語モデル(LLM)における不確実性推定文献に着想を得たモデルキャリブレーションの代替視点として,一貫性の概念を紹介する。
従来の信頼性ベースの見方よりも、そのアドバンテージを強調します。
この概念に基づいて、摂動入力間のモデルの一貫性に基づいて信頼度を調整する、一貫性校正(CC)と呼ばれるポストホック校正手法を提案する。
CCは、追加のデータサンプルやラベル情報を必要とせず、代わりにソースデータから直接入力摂動を生成するため、特に局所不確実性推定において有効である。
さらに,ロジットレベルでの摂動は計算効率を著しく向上させることを示した。
我々は,CIFAR-10,CIFAR-100,ImageNetなどの標準データセットや,ImageNet-LTのようなロングテールデータセットに対して,さまざまなポストホックおよびトレーニング時間校正手法との比較により,CCの有効性を検証した。
関連論文リスト
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
大きな言語モデル(LLM)の信頼性スコアは、その応答が正しいという実際の可能性と一致すべきである。
現在の信頼性評価手法とキャリブレーション基準は、応答の正しさを2値の真/偽評価に頼っている。
本稿では,LLMの応答の正しさと関連する信頼度の両方を,様々なスコアの分布として扱う統一校正フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-09T17:00:32Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
本稿では、キャリブレーション対応ベイズニューラルネットワーク(CA-BNN)と呼ばれる統合フレームワークを提案する。
ベイズ学習のように変分分布を最適化しながら、データ依存あるいはデータ非依存の正則化をそれぞれ適用する。
予測キャリブレーション誤差(ECE)と信頼性図を用いて,提案手法の利点を検証した。
論文 参考訳(メタデータ) (2023-05-12T14:19:15Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Beyond In-Domain Scenarios: Robust Density-Aware Calibration [48.00374886504513]
ディープラーニングモデルをキャリブレーションして不確実性を認識した予測を生成することは、ディープニューラルネットワークが安全クリティカルなアプリケーションにますますデプロイされるため、非常に重要です。
k-nearest-neighbors(KNN)に基づく精度保存と密度認識手法であるDACを提案する。
DACはドメインシフトやOODのキャリブレーション性能の堅牢性を高めつつ,ドメイン内予測の不確実性評価に優れることを示す。
論文 参考訳(メタデータ) (2023-02-10T08:48:32Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
各校正誤差を適切なスコアに関連付ける適切な校正誤差の枠組みを導入する。
この関係は、モデルのキャリブレーションの改善を確実に定量化するために利用することができる。
論文 参考訳(メタデータ) (2022-03-15T12:46:08Z) - Mitigating Bias in Calibration Error Estimation [28.46667300490605]
本研究では,ECE_binが真の校正誤差を体系的に過小評価または過大評価できることを示すシミュレーションフレームワークを提案する。
ECE_sweep は、ビンの数をできるだけ多く選択する簡単な代替校正誤差メトリックを提案します。
論文 参考訳(メタデータ) (2020-12-15T23:28:06Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。