ActiveGAMER: Active GAussian Mapping through Efficient Rendering
- URL: http://arxiv.org/abs/2501.06897v1
- Date: Sun, 12 Jan 2025 18:38:51 GMT
- Title: ActiveGAMER: Active GAussian Mapping through Efficient Rendering
- Authors: Liyan Chen, Huangying Zhan, Kevin Chen, Xiangyu Xu, Qingan Yan, Changjiang Cai, Yi Xu,
- Abstract summary: ActiveGAMER is an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration.<n>Our system autonomously explores and reconstructs environments with state-of-the-art rendering and photometric accuracy and completeness.
- Score: 27.914247021088237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
Related papers
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.
We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.
We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction [53.19968902152528]
We present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion.
Specifically, our method learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps.
We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks.
arXiv Detail & Related papers (2025-04-08T05:33:13Z) - LandMarkSystem Technical Report [4.885906902650898]
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse.
Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale.
This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering.
arXiv Detail & Related papers (2025-03-27T10:55:36Z) - ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting [12.628559736243536]
We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting.
The system establishes a unified framework for online mapping, viewpoint selection, and path planning.
Experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency.
arXiv Detail & Related papers (2024-10-29T11:18:04Z) - Object-Oriented Material Classification and 3D Clustering for Improved Semantic Perception and Mapping in Mobile Robots [6.395242048226456]
We propose a complement-aware deep learning approach for RGB-D-based material classification built on top of an object-oriented pipeline.
We show a significant improvement in material classification and 3D clustering accuracy compared to state-of-the-art approaches for 3D semantic scene mapping.
arXiv Detail & Related papers (2024-07-08T16:25:01Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - RGBD GS-ICP SLAM [1.3108652488669732]
We propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS)
Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS.
arXiv Detail & Related papers (2024-03-19T08:49:48Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRt is a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses.
As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $ge$ 5 FPS and real-time rendering at $ge$ 100 FPS.
arXiv Detail & Related papers (2024-03-15T09:47:35Z) - SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM [5.144010652281121]
We present SGS-SLAM, the first semantic visual SLAM system based on Splatting.
It appearance geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems.
It delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy.
arXiv Detail & Related papers (2024-02-05T18:03:53Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
We propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes.
The input are high-resolution RGBD images captured by a mobile, hand-held capture system with point lights for active illumination.
arXiv Detail & Related papers (2023-06-06T15:07:39Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.