Quantum signal processing without angle finding
- URL: http://arxiv.org/abs/2501.07002v1
- Date: Mon, 13 Jan 2025 01:35:56 GMT
- Title: Quantum signal processing without angle finding
- Authors: Abhijeet Alase,
- Abstract summary: Quantum signal processing (QSP) has emerged as a unifying computation in quantum algorithms.
We propose a novel approach to QSP that bypasses the computationally intensive angle-finding step.
Our work significantly broadens the applicability of QSP in quantum computing.
- Score: 0.0
- License:
- Abstract: Quantum signal processing (QSP) has emerged as a unifying subroutine in quantum algorithms. In QSP, we are given a function $f$ and a unitary black-box $U$, and the goal is to construct a quantum circuit for implementing $f(U)$ to a given precision. The existing approaches to performing QSP require a classical preprocessing step to compute rotation angle parameters for quantum circuits that implement $f$ approximately. However, this classical computation often becomes a bottleneck, limiting the scalability and practicality of QSP. In this work, we propose a novel approach to QSP that bypasses the computationally intensive angle-finding step. Our method leverages a quantum circuit for implementing a diagonal operator that encodes $f$, which can be constructed from a classical circuit for evaluating $f$. This approach to QSP simplifies the circuit design significantly while enabling nearly optimal implementation of functions of block-encoded Hermitian matrices for black-box functions. Our circuit closely resembles the phase estimation-based circuit for function implementation, challenging conventional skepticism about its efficiency. By reducing classical overhead, our work significantly broadens the applicability of QSP in quantum computing.
Related papers
- Quantum Wasserstein Compilation: Unitary Compilation using the Quantum Earth Mover's Distance [2.502222151305252]
quantum circuit compilation (QCC) is a crucial component of any quantum algorithm execution.
We present a VQCC-objective function called the quantum Wasserstein compilation (QWC) cost function based on the quantum Wasserstein distance of order 1.
An estimation method based on measurements of local Pauli-observable is utilized in a generative adversarial network to learn a given quantum circuit.
arXiv Detail & Related papers (2024-09-09T17:46:40Z) - SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation [12.591173729459427]
We show that it is possible to leverage a pre-trained neural network to directly generate the QSP circuit for arbitrary quantum state.
Our study makes a steady step towards a universal neural designer for approximate QSP.
arXiv Detail & Related papers (2024-08-10T04:39:05Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of vectors.
This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing.
arXiv Detail & Related papers (2023-11-06T17:39:14Z) - Classical variational optimization of PREPARE circuit for quantum phase
estimation of quantum chemistry Hamiltonians [0.8009842832476994]
We propose a method for constructing $textttPREPARE$ circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry.
The $textttPREPARE$ circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes.
arXiv Detail & Related papers (2023-08-26T05:32:38Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.