Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance
- URL: http://arxiv.org/abs/2304.08793v2
- Date: Mon, 18 Sep 2023 16:22:03 GMT
- Title: Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance
- Authors: Mark-Oliver Wolf, Tom Ewen, Ivica Turkalj
- Abstract summary: Classical Monte Carlo algorithms can theoretically be sped up on a quantum computer by employing amplitude estimation (AE)
We develop a straightforward approach based on pretraining parameterized quantum circuits.
We show how they can be transformed into their conditional variant, making them usable as a subroutine in an AE algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical Monte Carlo algorithms can theoretically be sped up on a quantum
computer by employing amplitude estimation (AE). To realize this, an efficient
implementation of state-dependent functions is crucial. We develop a
straightforward approach based on pretraining parameterized quantum circuits,
and show how they can be transformed into their conditional variant, making
them usable as a subroutine in an AE algorithm. To identify a suitable circuit,
we propose a genetic optimization approach that combines variable ansatzes and
data encoding. We apply our algorithm to the problem of pricing financial
derivatives. At the expense of a costly pretraining process, this results in a
quantum circuit implementing the derivatives' payoff function more efficiently
than previously existing quantum algorithms. In particular, we compare the
performance for European vanilla and basket options.
Related papers
- Quantum signal processing without angle finding [0.0]
Quantum signal processing (QSP) has emerged as a unifying computation in quantum algorithms.
We propose a novel approach to QSP that bypasses the computationally intensive angle-finding step.
Our work significantly broadens the applicability of QSP in quantum computing.
arXiv Detail & Related papers (2025-01-13T01:35:56Z) - Efficient Online Quantum Circuit Learning with No Upfront Training [1.0159681653887238]
We propose a surrogate-based method for optimizing parameterized quantum circuits with few calls to a quantum computer.
For 16-qubit random 3-regular Max-Cut problems solved using the QAOA ansatz, we find that our method outperforms the prior state of the art.
arXiv Detail & Related papers (2025-01-08T17:30:45Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
We present a novel algorithm "Adaptive Circuit Learning of Born Machine" (ACLBM)
Our algorithm is tailored to selectively integrate two-qubit entangled gates that best capture the complex entanglement present within the target state.
Empirical results underscore the proficiency of our approach in encoding real-world data through amplitude embedding.
arXiv Detail & Related papers (2023-11-29T16:47:31Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of vectors.
This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing.
arXiv Detail & Related papers (2023-11-06T17:39:14Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.