論文の概要: PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2501.07032v2
- Date: Mon, 20 Jan 2025 00:26:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:15:42.490024
- Title: PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks
- Title(参考訳): PRKAN:パラメータ再現型コルモゴロフ・アルノルドネットワーク
- Authors: Hoang-Thang Ta, Duy-Quy Thai, Anh Tran, Grigori Sidorov, Alexander Gelbukh,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は、ニューラルネットワークアーキテクチャの革新を象徴している。
Kansは、CNN、Recurrent Reduced Networks(RNN)、Transformerなどのモデルで、MLP(Multi-Layer Perceptrons)に代わる魅力的な代替手段を提供する。
本稿では,階層内のパラメータ数を削減するために複数の手法を用いたPRKANを導入し,ニューラルM層に匹敵する手法を提案する。
- 参考スコア(独自算出の注目度): 47.947045173329315
- License:
- Abstract: Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs drive groundbreaking research and enable transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers than MLPs. To address this limitation, this paper introduces PRKANs (Parameter-Reduced Kolmogorov-Arnold Networks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs outperform several existing KANs, and their variant with attention mechanisms rivals the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: https://github.com/hoangthangta/All-KAN.
- Abstract(参考訳): Kolmogorov-Arnold Networks(KAN)は、ニューラルネットワークアーキテクチャの革新であり、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)、トランスフォーマーといったモデルにおいて、MLP(Multi-Layer Perceptrons)に代わる魅力的な代替手段を提供する。
ネットワーク設計を進めることで、kanは画期的な研究を推進し、ニューラルネットワークを含むさまざまな科学領域にわたる変革的な応用を可能にします。
しかし、既存の Kan は MLP よりもネットワーク層でかなり多くのパラメータを必要とすることが多い。
この制限に対処するために、PRKAN(Parameter-Reduced Kolmogorov-Arnold Networks)を導入し、Kan層におけるパラメータ数を削減し、MLP層に匹敵する。
MNISTデータセットとFashion-MNISTデータセットの実験的結果は、PRKANがいくつかの既存のkanより優れており、注意機構を備えた派生型は、トレーニング時間が少し長いにもかかわらず、MLPのパフォーマンスに匹敵することを示している。
さらに, この研究は, ガウス放射基底関数(GRBF)の利点とkan設計における層正規化の利点を強調した。
この作業のリポジトリは、https://github.com/hoangthangta/All-KAN.comで公開されている。
関連論文リスト
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-10-02T22:56:00Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov-Networks (KAN) は基本的に異なる数学的枠組みに基づいている。
Kansは継続的学習シナリオの忘れなど,いくつかの大きな問題に対処している。
コンピュータビジョンにおける連続的な学習課題における感性の評価によって調査を拡大する。
論文 参考訳(メタデータ) (2024-09-20T14:49:21Z) - Kolmogorov-Arnold Network for Online Reinforcement Learning [0.22615818641180724]
Kolmogorov-Arnold Networks (KANs)は、ニューラルネットワークにおけるMLP(Multi-Layer Perceptrons)の代替としての可能性を示している。
Kansはパラメータが少なく、メモリ使用量が減ったユニバーサル関数近似を提供する。
論文 参考訳(メタデータ) (2024-08-09T03:32:37Z) - TKAN: Temporal Kolmogorov-Arnold Networks [0.0]
LSTM(Long Short-Term Memory)は、シーケンシャルデータにおける長期的な依存関係をキャプチャする能力を示している。
Kolmogorov-Arnold Networks (KANs) に触発されたマルチ層パーセプトロン(MLP)の代替案
我々はkanとLSTM、TKAN(Temporal Kolomogorov-Arnold Networks)にインスパイアされた新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:40:48Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
本稿では,ネットワーク特性予測のためのニューラルネットワーク重み符号化手法を提案する。
我々のアプローチは、混合アーキテクチャのモデル動物園でニューラルネットワークを符号化することができる。
ニューラルネットワークのプロパティ予測には,クロスデータセットとクロスアーキテクチャという,2つの新しいタスクを導入する。
論文 参考訳(メタデータ) (2023-05-26T04:34:28Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。