Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis
- URL: http://arxiv.org/abs/2501.07034v1
- Date: Mon, 13 Jan 2025 03:13:32 GMT
- Title: Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis
- Authors: Luwei Zeng, Runze Yan,
- Abstract summary: Modeling car-following behavior is essential for traffic simulation, analyzing driving patterns, and understanding complex traffic flows.
While machine learning and deep learning methods capture complex patterns, they require large labeled datasets.
Foundation models provide a more efficient alternative, pre-trained on vast, diverse time series datasets.
- Score: 0.0
- License:
- Abstract: Modeling car-following behavior is essential for traffic simulation, analyzing driving patterns, and understanding complex traffic flows with varying levels of autonomous vehicles. Traditional models like the Safe Distance Model and Intelligent Driver Model (IDM) require precise parameter calibration and often lack generality due to simplified assumptions about driver behavior. While machine learning and deep learning methods capture complex patterns, they require large labeled datasets. Foundation models provide a more efficient alternative. Pre-trained on vast, diverse time series datasets, they can be applied directly to various tasks without the need for extensive re-training. These models generalize well across domains, and with minimal fine-tuning, they can be adapted to specific tasks like car-following behavior prediction. In this paper, we apply Chronos, a state-of-the-art public time series foundation model, to analyze car-following behavior using the Open ACC dataset. Without fine-tuning, Chronos outperforms traditional models like IDM and Exponential smoothing with trend and seasonality (ETS), and achieves similar results to deep learning models such as DeepAR and TFT, with an RMSE of 0.60. After fine-tuning, Chronos reduces the error to an RMSE of 0.53, representing a 33.75% improvement over IDM and a 12-37% reduction compared to machine learning models like ETS and deep learning models including DeepAR, WaveNet, and TFT. This demonstrates the potential of foundation models to significantly advance transportation research, offering a scalable, adaptable, and highly accurate approach to predicting and simulating car-following behaviors.
Related papers
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
arXiv Detail & Related papers (2022-10-20T02:24:27Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
We develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing.
We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model.
arXiv Detail & Related papers (2020-11-17T16:24:10Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.