論文の概要: PoAct: Policy and Action Dual-Control Agent for Generalized Applications
- arxiv url: http://arxiv.org/abs/2501.07054v1
- Date: Mon, 13 Jan 2025 04:28:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:30.139140
- Title: PoAct: Policy and Action Dual-Control Agent for Generalized Applications
- Title(参考訳): PoAct:一般用途のためのポリシーとアクションデュアル・コントロル・エージェント
- Authors: Guozhi Yuan, Youfeng Liu, Jingli Yang, Wei Jia, Kai Lin, Yansong Gao, Shan He, Zilin Ding, Haitao Li,
- Abstract要約: 本稿では、汎用アプリケーションのためのポリシーとアクションデュアル・コントロル・エージェント(PoAct)を提案する。
PoActは、推論ポリシーを動的に切り替え、アクション空間を変更することで、高品質なコードアクションとより正確な推論パスを達成することを目指している。
- 参考スコア(独自算出の注目度): 18.342339678035685
- License:
- Abstract: Based on their superior comprehension and reasoning capabilities, Large Language Model (LLM) driven agent frameworks have achieved significant success in numerous complex reasoning tasks. ReAct-like agents can solve various intricate problems step-by-step through progressive planning and tool calls, iteratively optimizing new steps based on environmental feedback. However, as the planning capabilities of LLMs improve, the actions invoked by tool calls in ReAct-like frameworks often misalign with complex planning and challenging data organization. Code Action addresses these issues while also introducing the challenges of a more complex action space and more difficult action organization. To leverage Code Action and tackle the challenges of its complexity, this paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications. The aim is to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space. Experimental results on the Agent Benchmark for both legal and generic scenarios demonstrate the superior reasoning capabilities and reduced token consumption of our approach in complex tasks. On the LegalAgentBench, our method shows a 20 percent improvement over the baseline while requiring fewer tokens. We conducted experiments and analyses on the GPT-4o and GLM-4 series models, demonstrating the significant potential and scalability of our approach to solve complex problems.
- Abstract(参考訳): より優れた理解力と推論能力に基づいて、LLM(Large Language Model)駆動のエージェントフレームワークは多くの複雑な推論タスクで大きな成功を収めた。
ReActのようなエージェントは、プログレッシブプランニングとツールコールを通じて、様々な複雑な問題を段階的に解決し、環境フィードバックに基づいた新しいステップを反復的に最適化する。
しかし、LLMの計画能力が向上するにつれて、ReActのようなフレームワークのツールコールによって起動されるアクションは、複雑な計画と挑戦的なデータ組織と誤解することが多い。
Code Actionはこれらの問題に対処しつつ、より複雑なアクションスペースとより難しいアクション組織という課題を導入します。
本稿では、Code Actionを活用し、その複雑さの課題に取り組むために、汎用アプリケーションのためのPoAct(PoAct)とAction Dual-Control Agent(PoAct)を提案する。
その目的は、動的に推論ポリシーを切り替え、アクション空間を変更することで、高品質なコードアクションとより正確な推論パスを達成することである。
法的なシナリオと一般的なシナリオの両方に対するエージェントベンチマーク実験の結果、より優れた推論能力を示し、複雑なタスクにおける我々のアプローチのトークン消費を減らした。
LegalAgentBenchでは、トークンの少ないベースラインよりも20%改善されている。
我々はGPT-4oおよびGLM-4シリーズモデルの実験と解析を行い、複雑な問題を解決するためのアプローチの有意義な可能性と拡張性を実証した。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Sibyl: Simple yet Effective Agent Framework for Complex Real-world Reasoning [12.80689911863731]
Sibylは、最小限のツールセットを効率的に活用することによって、複雑な推論タスクに取り組むように設計された強力なフレームワークである。
Sibylは、最終回答を自己定義し、包括的でバランスの取れたアプローチを確保するために、マルチエージェントの議論に基づく陪審を実施。
GAIAベンチマークテストセットの実験結果から,Sibylエージェントは平均スコア34.55%の最先端性能を実現していることがわかった。
論文 参考訳(メタデータ) (2024-07-15T13:45:40Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
動的タスク分解・エージェント生成(TDAG)に基づくマルチエージェントフレームワークを提案する。
このフレームワークは複雑なタスクを小さなサブタスクに動的に分解し、それぞれが特定の生成されたサブエージェントに割り当てる。
ItineraryBenchは、さまざまな複雑さのタスク間でのメモリ、計画、ツール使用量のエージェントの能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-02-15T18:27:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。