TIMRL: A Novel Meta-Reinforcement Learning Framework for Non-Stationary and Multi-Task Environments
- URL: http://arxiv.org/abs/2501.07146v1
- Date: Mon, 13 Jan 2025 09:11:33 GMT
- Title: TIMRL: A Novel Meta-Reinforcement Learning Framework for Non-Stationary and Multi-Task Environments
- Authors: Chenyang Qi, Huiping Li, Panfeng Huang,
- Abstract summary: We propose a novel meta-reinforcement learning method by leveraging Gaussian mixture model and the transformer network.
The classification of tasks is encoded through transformer network to determine the Gaussian component corresponding to the task.
Experimental results demonstrate that the proposed method dramatically improves sample efficiency and accurately recognizes the classification of the tasks.
- Score: 6.941538672757626
- License:
- Abstract: In recent years, meta-reinforcement learning (meta-RL) algorithm has been proposed to improve sample efficiency in the field of decision-making and control, enabling agents to learn new knowledge from a small number of samples. However, most research uses the Gaussian distribution to extract task representation, which is poorly adapted to tasks that change in non-stationary environment. To address this problem, we propose a novel meta-reinforcement learning method by leveraging Gaussian mixture model and the transformer network to construct task inference model. The Gaussian mixture model is utilized to extend the task representation and conduct explicit encoding of tasks. Specifically, the classification of tasks is encoded through transformer network to determine the Gaussian component corresponding to the task. By leveraging task labels, the transformer network is trained using supervised learning. We validate our method on MuJoCo benchmarks with non-stationary and multi-task environments. Experimental results demonstrate that the proposed method dramatically improves sample efficiency and accurately recognizes the classification of the tasks, while performing excellently in the environment.
Related papers
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
arXiv Detail & Related papers (2024-10-24T16:32:23Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Multi-Environment Meta-Learning in Stochastic Linear Bandits [49.387421094105136]
We consider the feasibility of meta-learning when task parameters are drawn from a mixture distribution instead of a single environment.
We propose a regularized version of the OFUL algorithm that achieves low regret on a new task without requiring knowledge of the environment from which the new task originates.
arXiv Detail & Related papers (2022-05-12T19:31:28Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Transfer Bayesian Meta-learning via Weighted Free Energy Minimization [37.51664463278401]
A key assumption is that the auxiliary tasks, known as meta-training tasks, share the same generating distribution as the tasks to be encountered at deployment time.
This paper introduces weighted free energy minimization (WFEM) for transfer meta-learning.
arXiv Detail & Related papers (2021-06-20T15:17:51Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - Few Is Enough: Task-Augmented Active Meta-Learning for Brain Cell
Classification [8.998976678920236]
We propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt Deep Neural Networks to new tasks.
AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model.
We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step.
arXiv Detail & Related papers (2020-07-09T18:03:12Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.