Exposing a Fatal Flaw in Sample-based Quantum Diagonalization Methods
- URL: http://arxiv.org/abs/2501.07231v2
- Date: Fri, 21 Feb 2025 08:32:41 GMT
- Title: Exposing a Fatal Flaw in Sample-based Quantum Diagonalization Methods
- Authors: Peter Reinholdt, Karl Michael Ziems, Erik Rosendahl Kjellgren, Sonia Coriani, Stephan P. A. Sauer, Jacob Kongsted,
- Abstract summary: We show that QSCI methods face fundamental limitations that severely hinder their practical applicability in chemistry.<n>We demonstrate that while QSCI can, in principle, yield high-quality CI expansions, the method struggles with inefficiencies in finding new determinants.<n>This ultimately hinders utility in quantum chemistry applications as QSCI falls behind more efficient classical counterparts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Selected Configuration Interaction (QSCI) methods (also known as Sample-based Quantum Diagonalization, SQD) have emerged as promising near-term approaches to solving the electronic Schr\"odinger equation with quantum computers. In this work, we show that QSCI methods face fundamental limitations that severely hinder their practical applicability in chemistry. Using the nitrogen molecule and the iron-sulfur cluster [2Fe-2S] as examples, we demonstrate that while QSCI can, in principle, yield high-quality CI expansions similar to classical SCI heuristics in some cases, the method struggles with inefficiencies in finding new determinants as sampling repeatedly selects already seen configurations. This inefficiency becomes especially pronounced when targeting high-accuracy results or sampling from an approximate ansatz. In cases where the sampling problem is not present, the resulting CI expansions are less compact than those generated from classical heuristics, rendering QSCI an overall more expensive method. Our findings suggest a fatal flaw in QSCI methods as the inescapable trade-off between finding sufficiently many determinants and generating compact, accurate CI expansions. This ultimately hinders utility in quantum chemistry applications as QSCI falls behind more efficient classical counterparts.
Related papers
- Hardness of classically sampling quantum chemistry circuits [0.0]
We extend the scope to address quantum advantage in tasks relevant to chemistry and physics.
We show that a class of unitary cluster Jastrow (UCJ) ansatz can be used to perform arbitrary quantum-time computations.
Our demonstration, worst-case nonsimbility of UCJ, would potentially imply quantum advantage in quantum algorithms for chemistry and physics.
arXiv Detail & Related papers (2025-04-17T12:34:33Z) - Auxiliary-field quantum Monte Carlo method with quantum selected configuration interaction [0.0]
We propose using the wave function generated by the quantum selected configuration interaction (QSCI) method as the trial wave function in phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC)
We call this integrated approach QC-QSCI-AFQMC, or QSCI-AFQMC for short. This method is validated across several molecular systems.
arXiv Detail & Related papers (2025-02-28T14:12:37Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Quantum computation of conical intersections on a programmable superconducting quantum processor [10.064448021157139]
Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
arXiv Detail & Related papers (2024-02-20T04:12:40Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations
of Benzene [0.2624902795082451]
Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz.
We employ several circuit optimization methods tailored for trapped-ion quantum devices to enhance the feasibility of intricate chemical simulations.
These methods, when applied to a benzene molecule simulation, enabled the construction of an 8-qubit circuit with 69 two-qubit entangling operations.
arXiv Detail & Related papers (2023-08-01T17:03:10Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.