論文の概要: Depth and Image Fusion for Road Obstacle Detection Using Stereo Camera
- arxiv url: http://arxiv.org/abs/2501.07245v1
- Date: Mon, 13 Jan 2025 11:54:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:27.082134
- Title: Depth and Image Fusion for Road Obstacle Detection Using Stereo Camera
- Title(参考訳): ステレオカメラを用いた道路障害物検出のための深さと画像融合
- Authors: Oleg Perezyabov, Mikhail Gavrilenkov, Ilya Afanasyev,
- Abstract要約: 本稿では,道路上の物体の検知に2つの手法を組み合わせて行う。
道路上の物体の出現時期や大きさや形状が事前に分かっていないため,ML/DLベースのアプローチは適用できない。
この問題を解決するために、RGB法で小さなコントラストオブジェクトの探索を補完する深度と画像の融合法を開発し、SLICスーパーピクセルセグメンテーションを用いたステレオ画像ベースアプローチで障害物検出を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper is devoted to the detection of objects on a road, performed with a combination of two methods based on both the use of depth information and video analysis of data from a stereo camera. Since neither the time of the appearance of an object on the road, nor its size and shape is known in advance, ML/DL-based approaches are not applicable. The task becomes more complicated due to variations in artificial illumination, inhomogeneous road surface texture, and unknown character and features of the object. To solve this problem we developed the depth and image fusion method that complements a search of small contrast objects by RGB-based method, and obstacle detection by stereo image-based approach with SLIC superpixel segmentation. We conducted experiments with static and low speed obstacles in an underground parking lot and demonstrated the successful work of the developed technique for detecting and even tracking small objects, which can be parking infrastructure objects, things left on the road, wheels, dropped boxes, etc.
- Abstract(参考訳): 本稿では,ステレオカメラの深度情報と映像解析の両方に基づく2つの手法を組み合わせることで,道路上の物体の検出に着目する。
道路上の物体の出現時期や大きさや形状が事前に分かっていないため,ML/DLベースのアプローチは適用できない。
この課題は, 人工照明, 不均一な路面テクスチャ, 物体の未知の性質, 特徴の相違により, より複雑になる。
この問題を解決するために、RGB法で小さなコントラストオブジェクトの探索を補完する深度と画像の融合法を開発し、SLICスーパーピクセルセグメンテーションを用いたステレオ画像ベースアプローチで障害物検出を行った。
本研究では, 地下駐車場における静的・低速障害物実験を行い, 道路や車輪, 落下箱など, 小さな物体を検知し, 追跡する手法の開発に成功した。
関連論文リスト
- Retrieval Robust to Object Motion Blur [54.34823913494456]
本研究では,動きのぼやけの影響を受けやすい画像のオブジェクト検索手法を提案する。
ぼやけたオブジェクト検索のための最初の大規模データセットを提示する。
提案手法は,新しいぼやけた検索データセット上で,最先端の検索手法より優れている。
論文 参考訳(メタデータ) (2024-04-27T23:22:39Z) - MOSE: Boosting Vision-based Roadside 3D Object Detection with Scene Cues [12.508548561872553]
Scene cuEsを用いたMonocular 3Dオブジェクト検出のための新しいフレームワークMOSEを提案する。
シーンキューバンクは、同じシーンの複数のフレームからシーンキューを集約するように設計されている。
トランスベースのデコーダは、集約されたシーンキューと3Dオブジェクト位置のための3D位置埋め込みをリフトする。
論文 参考訳(メタデータ) (2024-04-08T08:11:56Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Spatio-Temporal Context Modeling for Road Obstacle Detection [12.464149169670735]
トレーニングデータのレイアウトを用いて、駆動シーンのデータ駆動コンテキスト時間モデルを構築する。
障害物は最先端のオブジェクト検出アルゴリズムによって検出され、結果は生成されたシーンと組み合わせられる。
論文 参考訳(メタデータ) (2023-01-19T07:06:35Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z) - CrossDTR: Cross-view and Depth-guided Transformers for 3D Object
Detection [10.696619570924778]
そこで我々は,3次元物体検出のためのクロスビューおよび奥行き誘導変換器を提案する。
歩行者検出では既存のマルチカメラ手法を10%上回り,mAPとNDSの指標では約3%を上回りました。
論文 参考訳(メタデータ) (2022-09-27T16:23:12Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Moving object detection for visual odometry in a dynamic environment
based on occlusion accumulation [31.143322364794894]
RGB-D画像を用いた移動物体検出アルゴリズムを提案する。
提案アルゴリズムは,背景モデルの推定を必要としない。
二乗回帰重みを持つVO法として高密度視覚計測(DVO)を用いる。
論文 参考訳(メタデータ) (2020-09-18T11:01:46Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。