LLM-Net: Democratizing LLMs-as-a-Service through Blockchain-based Expert Networks
- URL: http://arxiv.org/abs/2501.07288v2
- Date: Sun, 02 Feb 2025 00:43:45 GMT
- Title: LLM-Net: Democratizing LLMs-as-a-Service through Blockchain-based Expert Networks
- Authors: Zan-Kai Chong, Hiroyuki Ohsaki, Bryan Ng,
- Abstract summary: This paper introduces LLMs Networks (LLM-Net), a blockchain-based framework that democratizes Large Language Models (LLMs) as a service.<n>By leveraging collective computational resources and distributed domain expertise, LLM-Net incorporates fine-tuned expert models for various specific domains.<n>Our simulation, built on top of state-of-the-art LLMs such as Claude 3.5 Sonnet, Llama 3.1, Grok-2, and GPT-4o, validates the effectiveness of the reputation-based mechanism in maintaining service quality.
- Score: 1.3846014191157405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The centralization of Large Language Models (LLMs) development has created significant barriers to AI advancement, limiting the democratization of these powerful technologies. This centralization, coupled with the scarcity of high-quality training data and mounting complexity of maintaining comprehensive expertise across rapidly expanding knowledge domains, poses critical challenges to the continued growth of LLMs. While solutions like Retrieval-Augmented Generation (RAG) offer potential remedies, maintaining up-to-date expert knowledge across diverse domains remains a significant challenge, particularly given the exponential growth of specialized information. This paper introduces LLMs Networks (LLM-Net), a blockchain-based framework that democratizes LLMs-as-a-Service through a decentralized network of specialized LLM providers. By leveraging collective computational resources and distributed domain expertise, LLM-Net incorporates fine-tuned expert models for various specific domains, ensuring sustained knowledge growth while maintaining service quality through collaborative prompting mechanisms. The framework's robust design includes blockchain technology for transparent transaction and performance validation, establishing an immutable record of service delivery. Our simulation, built on top of state-of-the-art LLMs such as Claude 3.5 Sonnet, Llama 3.1, Grok-2, and GPT-4o, validates the effectiveness of the reputation-based mechanism in maintaining service quality by selecting high-performing respondents (LLM providers). Thereby it demonstrates the potential of LLM-Net to sustain AI advancement through the integration of decentralized expertise and blockchain-based accountability.
Related papers
- Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents [6.318292471845427]
We develop the queuing fundamentals for large language model (LLM) inference.
We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput.
arXiv Detail & Related papers (2025-04-10T00:12:12Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.
This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
Reinforcement learning (RL)-based large language models (LLMs) have gained significant attention.
Wireless networks require the empowerment of RL-based LLMs.
Wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs.
arXiv Detail & Related papers (2025-03-13T01:59:11Z) - Federated In-Context LLM Agent Learning [3.4757641432843487]
Large Language Models (LLMs) have revolutionized intelligent services by enabling logical reasoning, tool use, and interaction with external systems as agents.<n>In this paper, we propose a novel privacy-preserving Federated In-context LLM Agent Learning (FICAL) algorithm.<n>The results show that FICAL has competitive performance compared to other SOTA baselines with a significant communication cost decrease of $mathbf3.33times105$ times.
arXiv Detail & Related papers (2024-12-11T03:00:24Z) - Connecting Large Language Models with Blockchain: Advancing the Evolution of Smart Contracts from Automation to Intelligence [2.2727580420156857]
This paper proposes and implements a universal framework for integrating Large Language Models with blockchain data, sysname.
By combining semantic relatedness with truth discovery methods, we introduce an innovative data aggregation approach, funcname.
Experimental results demonstrate that, even with 40% malicious nodes, the proposed solution improves data accuracy by an average of 17.74% compared to the optimal baseline.
arXiv Detail & Related papers (2024-12-03T08:35:51Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Federated TrustChain: Blockchain-Enhanced LLM Training and Unlearning [22.33179965773829]
We propose a novel blockchain-based federated learning framework for Large Language Models (LLMs)
Our framework leverages blockchain technology to create a tamper-proof record of each model's contributions and introduces an innovative unlearning function that seamlessly integrates with the federated learning mechanism.
arXiv Detail & Related papers (2024-06-06T13:44:44Z) - mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture [31.944353229461157]
We propose a pioneering framework, multi-Agent-inspired Collaboration for root cause analysis in micro-services architecture (mABC)<n>mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and significantly improves the IT Operation domain.
arXiv Detail & Related papers (2024-04-18T12:35:39Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)<n>This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large
Language Models [6.867309936992639]
Large language models (LLMs) serve people in the form of AI-generated content (AIGC)
It is difficult to guarantee the authenticity and reliability of AIGC learning data.
There are also hidden dangers of privacy disclosure in distributed AI training.
arXiv Detail & Related papers (2023-10-10T03:18:26Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.