RbRL2.0: Integrated Reward and Policy Learning for Rating-based Reinforcement Learning
- URL: http://arxiv.org/abs/2501.07502v1
- Date: Mon, 13 Jan 2025 17:19:34 GMT
- Title: RbRL2.0: Integrated Reward and Policy Learning for Rating-based Reinforcement Learning
- Authors: Mingkang Wu, Devin White, Vernon Lawhern, Nicholas R. Waytowich, Yongcan Cao,
- Abstract summary: Reinforcement learning (RL) learns policies from various experiences based on the associated cumulative return/rewards without treating them differently.
This paper proposes a novel RL method that mimics humans' decision making process by differentiating among collected experiences for effective policy learning.
- Score: 1.7095639309883044
- License:
- Abstract: Reinforcement learning (RL), a common tool in decision making, learns policies from various experiences based on the associated cumulative return/rewards without treating them differently. On the contrary, humans often learn to distinguish from different levels of performance and extract the underlying trends towards improving their decision making for best performance. Motivated by this, this paper proposes a novel RL method that mimics humans' decision making process by differentiating among collected experiences for effective policy learning. The main idea is to extract important directional information from experiences with different performance levels, named ratings, so that policies can be updated towards desired deviation from these experiences with different ratings. Specifically, we propose a new policy loss function that penalizes distribution similarities between the current policy and failed experiences with different ratings, and assign different weights to the penalty terms based on the rating classes. Meanwhile, reward learning from these rated samples can be integrated with the new policy loss towards an integrated reward and policy learning from rated samples. Optimizing the integrated reward and policy loss function will lead to the discovery of directions for policy improvement towards maximizing cumulative rewards and penalizing most from the lowest performance level while least from the highest performance level. To evaluate the effectiveness of the proposed method, we present results for experiments on a few typical environments that show improved convergence and overall performance over the existing rating-based reinforcement learning method with only reward learning.
Related papers
- Value Function Decomposition in Markov Recommendation Process [19.082512423102855]
We propose an online reinforcement learning framework to improve recommender performance.
We show that these two factors can be separately approximated by decomposing the original temporal difference loss.
The disentangled learning framework can achieve a more accurate estimation with faster learning and improved robustness against action exploration.
arXiv Detail & Related papers (2025-01-29T04:22:29Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Conformal Off-Policy Evaluation in Markov Decision Processes [53.786439742572995]
Reinforcement Learning aims at identifying and evaluating efficient control policies from data.
Most methods for this learning task, referred to as Off-Policy Evaluation (OPE), do not come with accuracy and certainty guarantees.
We present a novel OPE method based on Conformal Prediction that outputs an interval containing the true reward of the target policy with a prescribed level of certainty.
arXiv Detail & Related papers (2023-04-05T16:45:11Z) - Imitating Past Successes can be Very Suboptimal [145.70788608016755]
We show that existing outcome-conditioned imitation learning methods do not necessarily improve the policy.
We show that a simple modification results in a method that does guarantee policy improvement.
Our aim is not to develop an entirely new method, but rather to explain how a variant of outcome-conditioned imitation learning can be used to maximize rewards.
arXiv Detail & Related papers (2022-06-07T15:13:43Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
We train a separate exploration policy to maximize an approximate upper confidence bound of the critics in an off-policy actor-critic framework.
To mitigate the off-policy-ness, we adapt the recently introduced DICE framework to learn a distribution correction ratio for off-policy actor-critic training.
arXiv Detail & Related papers (2021-10-22T22:07:51Z) - Variance Reduction based Experience Replay for Policy Optimization [3.0790370651488983]
Variance Reduction Experience Replay (VRER) is a framework for the selective reuse of relevant samples to improve policy gradient estimation.
VRER forms the foundation of our sample efficient off-policy learning algorithm known as Policy Gradient with VRER.
arXiv Detail & Related papers (2021-10-17T19:28:45Z) - Supervised Off-Policy Ranking [145.3039527243585]
Off-policy evaluation (OPE) leverages data generated by other policies to evaluate a target policy.
We propose supervised off-policy ranking that learns a policy scoring model by correctly ranking training policies with known performance.
Our method outperforms strong baseline OPE methods in terms of both rank correlation and performance gap between the truly best and the best of the ranked top three policies.
arXiv Detail & Related papers (2021-07-03T07:01:23Z) - Self-Imitation Advantage Learning [43.8107780378031]
Self-imitation learning is a Reinforcement Learning method that encourages actions whose returns were higher than expected.
We propose a novel generalization of self-imitation learning for off-policy RL, based on a modification of the Bellman optimality operator.
arXiv Detail & Related papers (2020-12-22T13:21:50Z) - Reward-Conditioned Policies [100.64167842905069]
imitation learning requires near-optimal expert data.
Can we learn effective policies via supervised learning without demonstrations?
We show how such an approach can be derived as a principled method for policy search.
arXiv Detail & Related papers (2019-12-31T18:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.