論文の概要: Investigating Large Language Models in Inferring Personality Traits from User Conversations
- arxiv url: http://arxiv.org/abs/2501.07532v1
- Date: Mon, 13 Jan 2025 18:09:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:58.194537
- Title: Investigating Large Language Models in Inferring Personality Traits from User Conversations
- Title(参考訳): ユーザの会話から人格特性を推定する大規模言語モデルの検討
- Authors: Jianfeng Zhu, Ruoming Jin, Karin G. Coifman,
- Abstract要約: 大規模言語モデル(LLM)は、多様なドメインにまたがる目覚ましい人間のような能力を示している。
本研究は, GPT-4o と GPT-4o mini が, ビッグファイブの性格特性を推測し, ユーザの会話から BFI-10 項目のスコアを生成できるかどうかを評価する。
- 参考スコア(独自算出の注目度): 5.705775078773656
- License:
- Abstract: Large Language Models (LLMs) are demonstrating remarkable human like capabilities across diverse domains, including psychological assessment. This study evaluates whether LLMs, specifically GPT-4o and GPT-4o mini, can infer Big Five personality traits and generate Big Five Inventory-10 (BFI-10) item scores from user conversations under zero-shot prompting conditions. Our findings reveal that incorporating an intermediate step--prompting for BFI-10 item scores before calculating traits--enhances accuracy and aligns more closely with the gold standard than direct trait inference. This structured approach underscores the importance of leveraging psychological frameworks in improving predictive precision. Additionally, a group comparison based on depressive symptom presence revealed differential model performance. Participants were categorized into two groups: those experiencing at least one depressive symptom and those without symptoms. GPT-4o mini demonstrated heightened sensitivity to depression-related shifts in traits such as Neuroticism and Conscientiousness within the symptom-present group, whereas GPT-4o exhibited strengths in nuanced interpretation across groups. These findings underscore the potential of LLMs to analyze real-world psychological data effectively, offering a valuable foundation for interdisciplinary research at the intersection of artificial intelligence and psychology.
- Abstract(参考訳): 大規模言語モデル(LLM)は、心理学的評価を含む様々な領域にまたがる顕著な人間のような能力を示す。
本研究では,LPM,特にGPT-4oとGPT-4o miniが,ビッグファイブの性格特性を推定し,ゼロショットプロンプト条件下でのユーザ会話からビッグファイブ・インベントリ-10(BFI-10)項目スコアを生成できるかどうかを評価する。
以上の結果から,BFI-10項目の点数に中間的なステッププロンプトを組み込んで特性を計算し,精度を向上し,直接特性推定よりも金標準との整合性を高めることが示唆された。
この構造的アプローチは、予測精度を改善するために心理学的枠組みを活用することの重要性を浮き彫りにしている。
さらに,抑うつ症状の有無に基づく群比較の結果,差分モデルの性能が示された。
参加者は、少なくとも1つのうつ症状を経験するグループと、症状のないグループに分けられた。
GPT-4o miniは, 症状提示群における神経症, 良性などの形質のうつ病関連変化に対する感受性を高める一方, GPT-4oは, グループ間でのニュアンス解釈において強みを示した。
これらの知見は、LLMが現実世界の心理学データを効果的に分析する可能性を強調し、人工知能と心理学の交差点における学際研究の貴重な基盤を提供する。
関連論文リスト
- Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Large Language Models Can Infer Personality from Free-Form User Interactions [0.0]
GPT-4は、パーソナリティを適度な精度で推測することができ、以前のアプローチよりも優れていた。
その結果,人格評価への直接的注力は,ユーザエクスペリエンスの低下を招いていないことがわかった。
予備的な分析は、人格推定の正確さは、社会デミノグラフィーのサブグループによってわずかに異なることを示唆している。
論文 参考訳(メタデータ) (2024-05-19T20:33:36Z) - Comparing the Efficacy of GPT-4 and Chat-GPT in Mental Health Care: A Blind Assessment of Large Language Models for Psychological Support [0.0]
GPT-4とChat-GPTの2つの大きな言語モデルが18種類の心理的刺激に反応して試験された。
GPT-4は10点中8.29点、Chat-GPTは6.52点だった。
論文 参考訳(メタデータ) (2024-05-15T12:44:54Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - Illuminate: A novel approach for depression detection with explainable
analysis and proactive therapy using prompt engineering [0.0]
本稿では,GPT-4(Generative Pre-trained Transformer 4),Llama 2 chat,およびGeminiを用いた抑うつ検出・治療のための新しいパラダイムを提案する。
LLMは、うつ病の診断、説明、治療介入を提案する特別なプロンプトで微調整されている。
論文 参考訳(メタデータ) (2024-02-05T06:08:06Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Large Language Models Can Infer Psychological Dispositions of Social Media Users [1.0923877073891446]
GPT-3.5とGPT-4は、ゼロショット学習シナリオにおいて、ユーザのFacebookステータス更新からビッグファイブの性格特性を導出できるかどうかを検証する。
その結果, LLM-inferred と self-reported trait score の間には r =.29 (range = [.22,.33]) の相関が認められた。
予測は、いくつかの特徴について、女性と若い個人にとってより正確であることが判明し、基礎となるトレーニングデータやオンライン自己表現の違いから生じる潜在的なバイアスが示唆された。
論文 参考訳(メタデータ) (2023-09-13T01:27:48Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Evaluating Psychological Safety of Large Language Models [72.88260608425949]
我々は,大規模言語モデル(LLM)の心理的安全性を評価するために,バイアスのないプロンプトを設計した。
短い暗黒トライアド(SD-3)とビッグファイブインベントリ(BFI)の2つのパーソナリティテストを用いて5種類のLDMを試験した。
毒性を減らすための安全基準を微調整したものの、InstructGPT, GPT-3.5, GPT-4は依然として暗い性格パターンを示した。
直接選好最適化を用いたBFIからの反応を微調整したLlama-2-chat-7Bは、モデルの心理的毒性を効果的に低減する。
論文 参考訳(メタデータ) (2022-12-20T18:45:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。