論文の概要: GPT-4 on Clinic Depression Assessment: An LLM-Based Pilot Study
- arxiv url: http://arxiv.org/abs/2501.00199v1
- Date: Tue, 31 Dec 2024 00:32:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:59.309348
- Title: GPT-4 on Clinic Depression Assessment: An LLM-Based Pilot Study
- Title(参考訳): 臨床うつ病評価におけるGPT-4 : LLMによるパイロット研究
- Authors: Giuliano Lorenzoni, Pedro Elkind Velmovitsky, Paulo Alencar, Donald Cowan,
- Abstract要約: 転写解析に基づく臨床うつ病評価におけるGPT-4の使用について検討した。
本稿では,患者インタビューを2つのカテゴリーに分類するモデルの能力について検討する。
その結果, GPT-4の精度およびF1スコアは, 構成によって大きく変動することが示唆された。
- 参考スコア(独自算出の注目度): 0.6999740786886538
- License:
- Abstract: Depression has impacted millions of people worldwide and has become one of the most prevalent mental disorders. Early mental disorder detection can lead to cost savings for public health agencies and avoid the onset of other major comorbidities. Additionally, the shortage of specialized personnel is a critical issue because clinical depression diagnosis is highly dependent on expert professionals and is time consuming. In this study, we explore the use of GPT-4 for clinical depression assessment based on transcript analysis. We examine the model's ability to classify patient interviews into binary categories: depressed and not depressed. A comparative analysis is conducted considering prompt complexity (e.g., using both simple and complex prompts) as well as varied temperature settings to assess the impact of prompt complexity and randomness on the model's performance. Results indicate that GPT-4 exhibits considerable variability in accuracy and F1-Score across configurations, with optimal performance observed at lower temperature values (0.0-0.2) for complex prompts. However, beyond a certain threshold (temperature >= 0.3), the relationship between randomness and performance becomes unpredictable, diminishing the gains from prompt complexity. These findings suggest that, while GPT-4 shows promise for clinical assessment, the configuration of the prompts and model parameters requires careful calibration to ensure consistent results. This preliminary study contributes to understanding the dynamics between prompt engineering and large language models, offering insights for future development of AI-powered tools in clinical settings.
- Abstract(参考訳): うつ病は世界中で何百万人もの人々に影響を与えており、最も多い精神疾患の1つとなっている。
早期の精神障害検出は、公衆衛生機関のコスト削減につながり、他の主要な共同作業の開始を避けることができる。
さらに、専門職の不足は、臨床うつ病の診断が専門家に大きく依存し、時間を要するため、重要な問題である。
本研究では,転写解析に基づく臨床うつ病評価におけるGPT-4の使用について検討した。
本稿では,患者インタビューを2つのカテゴリーに分類するモデルの能力について検討する。
モデルの性能に対する急激な複雑さとランダム性の影響を評価するために、比較分析を行い(例えば、単純なプロンプトと複雑なプロンプトの両方を用いて)、様々な温度設定を考慮に入れた。
その結果, GPT-4は, 複雑なプロンプトに対して低い温度値 (0.0-0.2) で最適性能が観察され, 精度とF1スコアに有意なばらつきがあることが示唆された。
しかし、一定のしきい値(温度>=0.3)を超えると、ランダム性と性能の関係は予測不能となり、迅速な複雑性による利得が低下する。
これらの結果から, GPT-4は臨床評価に有意であるが, プロンプトとモデルパラメータの設定には, 一貫性のある結果を得るためには, 慎重な校正が必要であることが示唆された。
この予備的な研究は、素早いエンジニアリングと大規模言語モデルの間のダイナミクスの理解に寄与し、臨床環境でAIを活用したツールを将来開発するための洞察を提供する。
関連論文リスト
- Can artificial intelligence predict clinical trial outcomes? [5.326858857564308]
本研究では,大言語モデル(LLM)の臨床試験結果の予測能力について検討した。
我々は、バランスの取れた精度、特異性、リコール、マシューズ相関係数(MCC)などの指標を用いてモデルの性能を比較する。
高い複雑さを特徴とする腫瘍学の試行は、全てのモデルで難しいままである。
論文 参考訳(メタデータ) (2024-11-26T17:05:27Z) - Comparing the Efficacy of GPT-4 and Chat-GPT in Mental Health Care: A Blind Assessment of Large Language Models for Psychological Support [0.0]
GPT-4とChat-GPTの2つの大きな言語モデルが18種類の心理的刺激に反応して試験された。
GPT-4は10点中8.29点、Chat-GPTは6.52点だった。
論文 参考訳(メタデータ) (2024-05-15T12:44:54Z) - Large Language Models in Medical Term Classification and Unexpected
Misalignment Between Response and Reasoning [28.355000184014084]
本研究は, 軽度認知障害 (MCI) 患者を退院サマリーから識別する, 最先端の大規模言語モデル (LLMs) の有効性を評価するものである。
データは、モデルの微調整と評価のために、トレーニング、検証、テストセットに7:2:1の比率で分割された。
FalconやLLaMA 2のようなオープンソースのモデルは高い精度を達成したが、説明的推論に欠けていた。
論文 参考訳(メタデータ) (2023-12-19T17:36:48Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - The Capability of Large Language Models to Measure Psychiatric
Functioning [9.938814639951842]
Med-PaLM 2は、様々な精神疾患にまたがる精神機能を評価することができる。
最強のパフォーマンスは、標準化された評価に基づく抑うつスコアの予測であった。
その結果,一般臨床言語モデルが精神医学的リスクを柔軟に予測できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
このような洞察を用いることで、SVMとLSTMに基づく抑うつ検出器のトレーニング速度と性能を向上させることができる。
論文 参考訳(メタデータ) (2023-07-06T09:54:35Z) - Capabilities of GPT-4 on Medical Challenge Problems [23.399857819743158]
GPT-4は、訓練や臨床課題の解決を通じて医療上の問題に特化しない汎用モデルである。
本稿では,GPT-4の総合的な評価を医学的能力試験とベンチマーク・データセットで行う。
論文 参考訳(メタデータ) (2023-03-20T16:18:38Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。