ML Mule: Mobile-Driven Context-Aware Collaborative Learning
- URL: http://arxiv.org/abs/2501.07536v2
- Date: Fri, 28 Mar 2025 20:19:35 GMT
- Title: ML Mule: Mobile-Driven Context-Aware Collaborative Learning
- Authors: Haoxiang Yu, Javier Berrocal, Christine Julien,
- Abstract summary: We propose a new class of machine learning methods that are more robust, distributed, and personalized.<n> ML Mule is an approach that utilizes individual mobile devices as'mules' to train and transport model snapshots.<n>Our results show that ML Mule converges faster and higher model accuracy compared to other existing methods.
- Score: 1.797172847888605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence has been integrated into nearly every aspect of daily life, powering applications from object detection with computer vision to large language models for writing emails and compact models for use in smart homes. These machine learning models at times cater to the needs of individual users but are often detached from them, as they are typically stored and processed in centralized data centers. This centralized approach raises privacy concerns, incurs high infrastructure costs, and struggles to provide real time, personalized experiences. Federated and fully decentralized learning methods have been proposed to address these issues, but they still depend on centralized servers or face slow convergence due to communication constraints. We propose ML Mule, an approach that utilizes individual mobile devices as 'mules' to train and transport model snapshots as the mules move through physical spaces, sharing these models with the physical 'spaces' the mules inhabit. This method implicitly forms affinity groups among devices associated with users who share particular spaces, enabling collaborative model evolution and protecting users' privacy. Our approach addresses several major shortcomings of traditional, federated, and fully decentralized learning systems. ML Mule represents a new class of machine learning methods that are more robust, distributed, and personalized, bringing the field closer to realizing the original vision of intelligent, adaptive, and genuinely context-aware smart environments. Our results show that ML Mule converges faster and achieves higher model accuracy compared to other existing methods.
Related papers
- Federating Dynamic Models using Early-Exit Architectures for Automatic Speech Recognition on Heterogeneous Clients [12.008071873475169]
Federated learning is a technique that collaboratively learns a shared prediction model while keeping the data local on different clients.
We propose using dynamical architectures which, employing early-exit solutions, can adapt their processing depending on the input and on the operation conditions.
This solution falls in the realm of partial training methods and brings two benefits: a single model is used on a variety of devices; federating the models after local training is straightforward.
arXiv Detail & Related papers (2024-05-27T17:32:37Z) - Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - On-device Online Learning and Semantic Management of TinyML Systems [8.183732025472766]
This study aims to bridge the gap between prototyping single TinyML models and developing reliable TinyML systems in production.
We propose online learning to enable training on constrained devices, adapting local models towards the latest field conditions.
We present semantic management for the joint management of models and devices at scale.
arXiv Detail & Related papers (2024-05-13T10:03:34Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Exploring Semantic Attributes from A Foundation Model for Federated
Learning of Disjoint Label Spaces [46.59992662412557]
In this work, we consider transferring mid-level semantic knowledge (such as attribute) which is not sensitive to specific objects of interest.
We formulate a new Federated Zero-Shot Learning (FZSL) paradigm to learn mid-level semantic knowledge at multiple local clients.
To improve model discriminative ability, we propose to explore semantic knowledge augmentation from external knowledge.
arXiv Detail & Related papers (2022-08-29T10:05:49Z) - Federated Split GANs [12.007429155505767]
We propose an alternative approach to train ML models in user's devices themselves.
We focus on GANs (generative adversarial networks) and leverage their inherent privacy-preserving attribute.
Our system preserves data privacy, keeps a short training time, and yields same accuracy of model training in unconstrained devices.
arXiv Detail & Related papers (2022-07-04T23:53:47Z) - Applied Federated Learning: Architectural Design for Robust and
Efficient Learning in Privacy Aware Settings [0.8454446648908585]
The classical machine learning paradigm requires the aggregation of user data in a central location.
Centralization of data poses risks, including a heightened risk of internal and external security incidents.
Federated learning with differential privacy is designed to avoid the server-side centralization pitfall.
arXiv Detail & Related papers (2022-06-02T00:30:04Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Federated Two-stage Learning with Sign-based Voting [45.2715985913761]
Federated learning is a distributed machine learning mechanism where local devices collaboratively train a shared global model.
Recent larger and deeper machine learning models also pose more difficulties in deploying them in a federated environment.
In this paper, we design a two-stage learning framework that augments prototypical federated learning with a cut layer on devices.
arXiv Detail & Related papers (2021-12-10T17:31:23Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Federated and continual learning for classification tasks in a society
of devices [59.45414406974091]
Light Federated and Continual Consensus (LFedCon2) is a new federated and continual architecture that uses light, traditional learners.
Our method allows powerless devices (such as smartphones or robots) to learn in real time, locally, continuously, autonomously and from users.
In order to test our proposal, we have applied it in a heterogeneous community of smartphone users to solve the problem of walking recognition.
arXiv Detail & Related papers (2020-06-12T12:37:03Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.