論文の概要: Decoding Musical Evolution Through Network Science
- arxiv url: http://arxiv.org/abs/2501.07557v1
- Date: Mon, 13 Jan 2025 18:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:18.279243
- Title: Decoding Musical Evolution Through Network Science
- Title(参考訳): ネットワーク科学による音楽進化のデコード
- Authors: Niccolo' Di Marco, Edoardo Loru, Alessandro Galeazzi, Matteo Cinelli, Walter Quattrociocchi,
- Abstract要約: 私たちはNetwork Scienceを使って音楽の複雑さを分析します。
それぞれの構成を重み付き指向ネットワークとして表現し,その構造特性について検討する。
その結果、クラシックとジャズの合成は、近年発達したジャンルよりも複雑さとメロディ的な多様性が高いことが明らかとなった。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License:
- Abstract: Music has always been central to human culture, reflecting and shaping traditions, emotions, and societal changes. Technological advancements have transformed how music is created and consumed, influencing tastes and the music itself. In this study, we use Network Science to analyze musical complexity. Drawing on $\approx20,000$ MIDI files across six macro-genres spanning nearly four centuries, we represent each composition as a weighted directed network to study its structural properties. Our results show that Classical and Jazz compositions have higher complexity and melodic diversity than recently developed genres. However, a temporal analysis reveals a trend toward simplification, with even Classical and Jazz nearing the complexity levels of modern genres. This study highlights how digital tools and streaming platforms shape musical evolution, fostering new genres while driving homogenization and simplicity.
- Abstract(参考訳): 音楽は常に人間の文化の中心であり、伝統、感情、社会的変化を反映し形作る。
技術的進歩は、音楽の創造と消費の仕方を変え、味覚と音楽そのものに影響を与える。
本研究では,Network Scienceを用いて音楽の複雑さを解析する。
約4世紀にわたる6つのマクロジャンルにまたがる$$\approx20,000のMIDIファイルに基づいて、私たちはそれぞれの構成を、その構造特性を研究するための重み付けされたネットワークとして表現する。
以上の結果から,クラシックとジャズの組成は近年発達したジャンルよりも複雑でメロディ的な多様性が高いことが示唆された。
しかし、時相分析によって単純化の傾向が明らかとなり、古典やジャズでさえ現代ジャンルの複雑さレベルに近づいている。
この研究は、デジタルツールとストリーミングプラットフォームがいかに音楽の進化を形作り、均質化とシンプルさを推進しながら新しいジャンルを育むかを強調した。
関連論文リスト
- A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - Quantifying the evolution of harmony and novelty in western classical
music [1.0152838128195467]
我々は、和声に関連する音楽的特徴について研究し、西洋古典音楽において、彼らが400年間にわたってどのように発展してきたかを述べる。
我々は重要な不確実性、および重要な遷移における多様性と新規性を定量化する尺度を開発する。
我々は,古典後期の急激な増加に続き,古典期前期の調和移行における革新の衰退を報告している。
論文 参考訳(メタデータ) (2023-08-06T23:00:34Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Novelty and Cultural Evolution in Modern Popular Music [0.0]
現代美術品と現代美術品を比較して、新しい工芸品を同定する。
1974年から2013年にかけて,Billboard Hot 100曲の楽曲情報検索(MIR)データと歌詞を用いて,各楽曲の聴覚特性と歌詞の新規性スコアを算出する。
論文 参考訳(メタデータ) (2022-06-15T18:25:39Z) - Structure-Enhanced Pop Music Generation via Harmony-Aware Learning [20.06867705303102]
構造強化されたポップ・ミュージック・ジェネレーションに調和学習を活用することを提案する。
主観的・客観的評価の結果,Harmony-Aware Hierarchical Music Transformer (HAT) が生成した楽曲の質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2021-09-14T05:04:13Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Music Harmony Generation, through Deep Learning and Using a
Multi-Objective Evolutionary Algorithm [0.0]
本稿では,ポリフォニック音楽生成のための遺伝的多目的進化最適化アルゴリズムを提案する。
ゴールの1つは音楽の規則と規則であり、他の2つのゴール、例えば音楽の専門家や普通のリスナーのスコアとともに、最も最適な反応を得るために進化のサイクルに適合する。
その結果,提案手法は,聞き手を引き寄せながら文法に従う調和音とともに,所望のスタイルや長さの難易度と快適さを生み出すことができることがわかった。
論文 参考訳(メタデータ) (2021-02-16T05:05:54Z) - The Jazz Transformer on the Front Line: Exploring the Shortcomings of
AI-composed Music through Quantitative Measures [36.49582705724548]
本稿では,ジャズ音楽のリードシートをモデル化するために,Transformer-XLと呼ばれるニューラルシーケンスモデルを利用する生成モデルであるJazz Transformerを提案する。
次に、異なる視点から生成された合成の一連の計算分析を行う。
我々の研究は、なぜ現在まで機械生成音楽が人類の芸術に及ばないのか分析的な方法で示し、今後の自動作曲への取り組みがさらに追求されるよう、いくつかの目標を設定している。
論文 参考訳(メタデータ) (2020-08-04T03:32:59Z) - Artificial Musical Intelligence: A Survey [51.477064918121336]
音楽は、機械学習と人工知能研究の領域としてますます広まりつつある。
この記事では、音楽知能の定義を提供し、その構成成分の分類を導入し、その追求に耐えうる幅広いAI手法を調査します。
論文 参考訳(メタデータ) (2020-06-17T04:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。