Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
- URL: http://arxiv.org/abs/2501.07601v2
- Date: Thu, 30 Jan 2025 14:20:33 GMT
- Title: Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
- Authors: Yi-Ping Chen, Vispi Karkaria, Ying-Kuan Tsai, Faith Rolark, Daniel Quispe, Robert X. Gao, Jian Cao, Wei Chen,
- Abstract summary: Digital Twin is a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making.
This paper presents a simultaneous multi-step Model Predictive Control framework for real-time decision-making.
We show that TiDE is capable of accurately predicting melt pool temperature and depth.
- Score: 7.677346577274853
- License:
- Abstract: Digital Twin-a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making-combined with recent advances in machine learning (ML), offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multi-variate deep neural network (DNN), named Time-Series Dense Encoder (TiDE), as the surrogate model. Different from the models in conventional MPC which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating MPC. Using Directed Energy Deposition additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10%-30%), reducing potential porosity defects. Compared to the PID controller, MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
Related papers
- MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)
In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.
A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry [0.0]
In metal Additive Manufacturing (AM), monitoring the temperature of the Melt Pool (MP) is crucial for ensuring part quality, process stability, defect prevention, and overall process optimization.
Traditional methods, are slow to converge and require extensive manual effort to translate data into actionable insights.
We propose an Artificial Intelligence (AI)-based solution aimed at reducing manual data processing reliance.
arXiv Detail & Related papers (2024-08-20T18:26:09Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Towards a Digital Twin Framework in Additive Manufacturing: Machine
Learning and Bayesian Optimization for Time Series Process Optimization [10.469801991143546]
Laser-directed-energy deposition (DED) offers advantages in additive manufacturing (AM) for creating intricate geometries and material grading.
A key issue is heat accumulation during DED, which affects the material microstructure and properties.
We present a digital twin (DT) framework for real-time predictive control of DED process parameters to meet specific design objectives.
arXiv Detail & Related papers (2024-02-27T17:53:13Z) - Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process [9.182594748320948]
A digital twin (DT) is a virtual representation of physical process, products and/or systems.
This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process.
We have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries.
arXiv Detail & Related papers (2023-11-14T00:45:53Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion.
We demonstrate accurate predictions of evolution plasma using deep learning-based surrogate modelling tools, viz., Neural Operators (FNO)
We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models.
FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak.
arXiv Detail & Related papers (2023-11-10T10:05:00Z) - Introducing a Deep Neural Network-based Model Predictive Control
Framework for Rapid Controller Implementation [41.38091115195305]
This work presents the experimental implementation of a deep neural network (DNN) based nonlinear MPC for Homogeneous Charge Compression Ignition (HCCI) combustion control.
Using the acados software package to enable the real-time implementation of the MPC on an ARM Cortex A72, the optimization calculations are completed within 1.4 ms.
The IMEP trajectory following of the developed controller was excellent, with a root-mean-square error of 0.133 bar, in addition to observing process constraints.
arXiv Detail & Related papers (2023-10-12T15:03:50Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
Federated learning (FL) is vulnerable to external attacks on FL models during parameters transmissions.
In this paper, we propose effective MP algorithms to combat state-of-the-art defensive aggregation mechanisms.
Our experimental results demonstrate that the proposed CMP algorithms are effective and substantially outperform existing attack mechanisms.
arXiv Detail & Related papers (2021-01-28T03:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.