Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process
- URL: http://arxiv.org/abs/2311.07821v1
- Date: Tue, 14 Nov 2023 00:45:53 GMT
- Title: Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process
- Authors: Yangfan Li, Satyajit Mojumder, Ye Lu, Abdullah Al Amin, Jiachen Guo,
Xiaoyu Xie, Wei Chen, Gregory J. Wagner, Jian Cao, Wing Kam Liu
- Abstract summary: A digital twin (DT) is a virtual representation of physical process, products and/or systems.
This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process.
We have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries.
- Score: 9.182594748320948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A digital twin (DT) is a virtual representation of physical process, products
and/or systems that requires a high-fidelity computational model for continuous
update through the integration of sensor data and user input. In the context of
laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the
manufacturing process can offer predictions for the produced parts, diagnostics
for manufacturing defects, as well as control capabilities. This paper
introduces a parameterized physics-based digital twin (PPB-DT) for the
statistical predictions of LPBF metal additive manufacturing process. We
accomplish this by creating a high-fidelity computational model that accurately
represents the melt pool phenomena and subsequently calibrating and validating
it through controlled experiments. In PPB-DT, a mechanistic reduced-order
method-driven stochastic calibration process is introduced, which enables the
statistical predictions of the melt pool geometries and the identification of
defects such as lack-of-fusion porosity and surface roughness, specifically for
diagnostic applications. Leveraging data derived from this physics-based model
and experiments, we have trained a machine learning-based digital twin
(PPB-ML-DT) model for predicting, monitoring, and controlling melt pool
geometries. These proposed digital twin models can be employed for predictions,
control, optimization, and quality assurance within the LPBF process,
ultimately expediting product development and certification in LPBF-based metal
additive manufacturing.
Related papers
- Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability [12.425166883814153]
Digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control.
Melt pool is one of the most commonly observed physical phenomena for process monitoring.
This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs.
arXiv Detail & Related papers (2024-09-19T13:54:01Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Digital Twin Calibration for Biological System-of-Systems: Cell Culture Manufacturing Process [3.0790370651488983]
We consider the cell culture process multi-scale mechanistic model, also known as Biological System-of-Systems (Bio-SoS)
This model with a modular design, composed of sub-models, allows us to integrate data across various production processes.
To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop a computational approach to quantify the impact of parameter estimation error of individual sub-models on the prediction accuracy of digital twin.
arXiv Detail & Related papers (2024-05-07T00:22:13Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
arXiv Detail & Related papers (2023-06-26T05:58:17Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.