Kolmogorov-Arnold Networks and Evolutionary Game Theory for More Personalized Cancer Treatment
- URL: http://arxiv.org/abs/2501.07611v1
- Date: Sun, 12 Jan 2025 20:58:21 GMT
- Title: Kolmogorov-Arnold Networks and Evolutionary Game Theory for More Personalized Cancer Treatment
- Authors: Sepinoud Azimi, Louise Spekking, Kateřina Staňková,
- Abstract summary: This paper proposes the development of an innovative framework that bridges Kolmogorov-Arnold Networks (KANs) and Evolutionary Game Theory (EGT)<n>KANs offer interpretable, edge-based neural architectures capable of modeling complex biological systems with unprecedented adaptability.<n>Their integration into the EGT framework enables dynamic modeling of cancer progression and treatment responses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized cancer treatment is revolutionizing oncology by leveraging precision medicine and advanced computational techniques to tailor therapies to individual patients. Despite its transformative potential, challenges such as limited generalizability, interpretability, and reproducibility of predictive models hinder its integration into clinical practice. Current methodologies often rely on black-box machine learning models, which, while accurate, lack the transparency needed for clinician trust and real-world application. This paper proposes the development of an innovative framework that bridges Kolmogorov-Arnold Networks (KANs) and Evolutionary Game Theory (EGT) to address these limitations. Inspired by the Kolmogorov-Arnold representation theorem, KANs offer interpretable, edge-based neural architectures capable of modeling complex biological systems with unprecedented adaptability. Their integration into the EGT framework enables dynamic modeling of cancer progression and treatment responses. By combining KAN's computational precision with EGT's mechanistic insights, this hybrid approach promises to enhance predictive accuracy, scalability, and clinical usability.
Related papers
- Hybrid CNN with Chebyshev Polynomial Expansion for Medical Image Analysis [0.0]
Lung cancer remains one of the leading causes of cancer-related mortality worldwide.
Traditional Convolutional Neural Networks (CNNs) have shown considerable promise in medical image analysis.
In this study, we propose a novel hybrid deep learning architecture that incorporates Chebyshev-CNN.
arXiv Detail & Related papers (2025-04-09T12:02:56Z) - Doctor-in-the-Loop: An Explainable, Multi-View Deep Learning Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer [0.6800826356148091]
Non-small cell lung cancer (NSCLC) remains a major global health challenge.
We propose Doctor-in-the-Loop, a novel framework that integrates expert-driven domain knowledge with explainable artificial intelligence techniques.
Our approach employs a gradual multi-view strategy, progressively refining the model's focus from broad contextual features to finer, lesion-specific details.
arXiv Detail & Related papers (2025-02-21T16:35:30Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
Skin cancer is one of the most prevalent and potentially life-threatening diseases worldwide.
We propose a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with Radial Basis Function (RBF) Networks to achieve high classification accuracy and enhanced interpretability.
arXiv Detail & Related papers (2025-01-24T19:19:02Z) - Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
We use neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction.<n>Our models, particularly $M_textmulti-pathway$ and $M_textcomprehensive$, demonstrate superior performance over traditional models.<n>These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications.
arXiv Detail & Related papers (2024-10-01T22:47:24Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
Genome-informed Hyper-Attention Network (G-HANet) is capable of effectively distilling histo-genomic knowledge during training.
Network comprises cross-modal associating branch (CAB) and hyper-attention survival branch (HSB)
arXiv Detail & Related papers (2024-03-15T06:20:09Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Graph representation forecasting of patient's medical conditions:
towards a digital twin [0.0]
We show the results of the investigation of pathological effects of overexpression of ACE2 across different signalling pathways in multiple tissues on cardiovascular functions.
We provide a proof of concept of integrating a large set of composable clinical models using molecular data.
arXiv Detail & Related papers (2020-09-17T13:49:48Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.