論文の概要: A Review on the Security Vulnerabilities of the IoMT against Malware Attacks and DDoS
- arxiv url: http://arxiv.org/abs/2501.07703v1
- Date: Mon, 13 Jan 2025 21:29:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:02.135833
- Title: A Review on the Security Vulnerabilities of the IoMT against Malware Attacks and DDoS
- Title(参考訳): マルウェア攻撃とDDoSに対するIoMTのセキュリティ脆弱性に関するレビュー
- Authors: Lily Dzamesi, Nelly Elsayed,
- Abstract要約: インターネット・オブ・メディカル・モノ(IoMT)は、医療機器を接続して患者の治療結果を監視することで医療産業を変革した。
本報告では,IoMT機器の脆弱性を概観し,重大な脅威に着目し,緩和策を検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Internet of Medical Things (IoMT) has transformed the healthcare industry by connecting medical devices in monitoring treatment outcomes of patients. This increased connectivity has resulted to significant security vulnerabilities in the case of malware and Distributed Denial of Service (DDoS) attacks. This literature review examines the vulnerabilities of IoMT devices, focusing on critical threats and exploring mitigation strategies. We conducted a comprehensive search across leading databases such as ACM Digital Library, IEEE Xplore, and Elsevier to analyze peer-reviewed studies published within the last five years (from 2019 to 2024). The review shows that inadequate encryption protocols, weak authentication methods, and irregular firmware updates are the main causes of risks associated with IoMT devices. We have identified emerging solutions like machine learning algorithms, blockchain technology, and edge computing as promising approaches to enhance IoMT security. This review emphasizes the pressing need to develop lightweight security measures and standardized protocols to protect patient data and ensure the integrity of healthcare services.
- Abstract(参考訳): インターネット・オブ・メディカル・モノ(IoMT)は、医療機器を接続して患者の治療結果を監視することで医療産業を変革した。
この接続性の増加は、マルウェアとDistributed Denial of Service(DDoS)攻撃の場合に重大なセキュリティ上の脆弱性をもたらしている。
本報告では,IoMT機器の脆弱性を概観し,重大な脅威に着目し,緩和策を検討する。
我々は、ACM Digital Library、IEEE Xplore、Elsevierといった主要なデータベースを網羅して包括的な検索を行い、過去5年間(2019年から2024年まで)に公表されたピアレビューされた研究を分析した。
このレビューは、不適切な暗号化プロトコル、弱い認証方法、不規則なファームウェア更新が、IoMTデバイスに関連するリスクの主な原因であることを示している。
IoMTセキュリティを強化するための有望なアプローチとして、マシンラーニングアルゴリズムやブロックチェーンテクノロジ、エッジコンピューティングといった新興ソリューションを特定しました。
このレビューでは、患者データを保護し、医療サービスの整合性を確保するために、軽量なセキュリティ対策と標準化されたプロトコルを開発することの必要性を強調している。
関連論文リスト
- Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge [5.6064476854380825]
Trusted Execution Environments (TEE) は、現代のセキュアコンピューティングの重要なコンポーネントである。
機密データを保護し、セキュアな操作を実行するために、プロセッサに分離されたゾーンを提供する。
その重要性にもかかわらず、TEEは障害注入(FI)攻撃に対してますます脆弱である。
論文 参考訳(メタデータ) (2024-11-22T11:59:44Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - A Novel Zero-Trust Machine Learning Green Architecture for Healthcare IoT Cybersecurity: Review, Analysis, and Implementation [0.0]
医療アプリケーションにおけるIoT(Internet of Things)デバイスの統合は、患者のケア、監視、データ管理に革命をもたらした。
しかし、これらのデバイスの急速な関与は、患者のプライバシーと医療データの整合性に重大な脅威をもたらす情報セキュリティ上の懸念をもたらす。
本稿では、医療アプリケーション内のIoTデバイスにおけるセキュリティ脆弱性に対処し、軽減するために設計された、機械学習(ML)ベースのアーキテクチャを紹介する。
論文 参考訳(メタデータ) (2024-01-14T21:01:21Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
本研究は,IoTに対するTrustベースのサイバーセキュリティセキュリティアプローチについて,系統的な文献レビューを行う。
我々は、これらの脅威に対処するために存在する共通の信頼に基づく緩和テクニックを強調した。
いくつかのオープンな問題が強調され、将来の研究の方向性が提示された。
論文 参考訳(メタデータ) (2023-11-20T12:21:35Z) - Progression and Challenges of IoT in Healthcare: A Short Review [0.0]
スマートヘルスケアの急成長する分野は、近い将来、かなりの収入を生み出す可能性がある。
インターネット・オブ・メディカル・モノ(IoMT)は、新型コロナウイルス(COVID-19)の感染拡大対策として、多くの国で戦略的に配備されている。
世界中のIoMTの迅速かつ広範な採用により、セキュリティとプライバシに関する問題が拡大した。
論文 参考訳(メタデータ) (2023-11-11T08:38:04Z) - Survey of Machine Learning Based Intrusion Detection Methods for
Internet of Medical Things [2.223733768286313]
Internet of Medical Things (IoMT) は、モノのインターネット(Internet of Things)の応用である。
このデータのセンシティブでプライベートな性質は、攻撃者にとって重要な関心事であるかもしれない。
ストレージや計算能力に制限のある機器に対する従来のセキュリティ手法の使用は効果がない。
論文 参考訳(メタデータ) (2022-02-19T18:40:55Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。