論文の概要: Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2311.11705v1
- Date: Mon, 20 Nov 2023 12:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:51:52.243587
- Title: Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review
- Title(参考訳): IoTセキュリティの強化に向けた信頼ベースのアプローチ - 体系的な文献レビュー
- Authors: Oghenetejiri Okporokpo, Funminiyi Olajide, Nemitari Ajienka, Xiaoqi Ma,
- Abstract要約: 本研究は,IoTに対するTrustベースのサイバーセキュリティセキュリティアプローチについて,系統的な文献レビューを行う。
我々は、これらの脅威に対処するために存在する共通の信頼に基づく緩和テクニックを強調した。
いくつかのオープンな問題が強調され、将来の研究の方向性が提示された。
- 参考スコア(独自算出の注目度): 3.0969632359049473
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The continuous rise in the adoption of emerging technologies such as Internet of Things (IoT) by businesses has brought unprecedented opportunities for innovation and growth. However, due to the distinct characteristics of these emerging IoT technologies like real-time data processing, Self-configuration, interoperability, and scalability, they have also introduced some unique cybersecurity challenges, such as malware attacks, advanced persistent threats (APTs), DoS /DDoS (Denial of Service & Distributed Denial of Service attacks) and insider threats. As a result of these challenges, there is an increased need for improved cybersecurity approaches and efficient management solutions to ensure the privacy and security of communication within IoT networks. One proposed security approach is the utilization of trust-based systems and is the focus of this study. This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT. A total of 23 articles were identified that satisfy the review criteria. We highlighted the common trust-based mitigation techniques in existence for dealing with these threats and grouped them into three major categories, namely: Observation-Based, Knowledge-Based & Cluster-Based systems. Finally, several open issues were highlighted, and future research directions presented.
- Abstract(参考訳): 企業によるIoT(Internet of Things)のような新興技術の継続的な普及は、イノベーションと成長の先例のない機会をもたらしている。
しかし、リアルタイムデータ処理、自己設定、相互運用性、スケーラビリティといった、これらの新興IoTテクノロジの特徴により、マルウェア攻撃、高度な永続的脅威(APT)、DoS/DDoS(Denial of Service & Distributed Denial of Service attack)、インサイダー脅威など、いくつかのユニークなサイバーセキュリティ課題も導入されている。
これらの課題の結果として、IoTネットワーク内の通信のプライバシとセキュリティを確保するために、改善されたサイバーセキュリティアプローチと効率的な管理ソリューションの必要性が高まっている。
1つのセキュリティアプローチは信頼に基づくシステムの利用であり、この研究の焦点となっている。
本研究は,IoTに対するTrustベースのサイバーセキュリティセキュリティアプローチについて,系統的な文献レビューを行う。
審査基準を満たす23の項目が特定された。
我々は、これらの脅威に対処するために存在する信頼に基づく一般的な緩和テクニックを強調し、それらを3つの主要なカテゴリ、すなわち、観察ベース、知識ベース、クラスタベースシステムに分類した。
最後に、いくつかのオープンな問題が強調され、今後の研究の方向性が提示された。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - A Comprehensive Analysis of Routing Vulnerabilities and Defense Strategies in IoT Networks [0.0]
IoT(Internet of Things)はさまざまなドメインに革命をもたらし、相互接続性の向上とデータ交換を通じて大きなメリットを提供している。
しかし、IoTネットワークに関連するセキュリティ上の課題は、その固有の脆弱性のため、ますます顕著になっている。
本稿では、IoTアーキテクチャにおけるネットワーク層の詳細分析を行い、ルーティングアタックによる潜在的なリスクを明らかにする。
論文 参考訳(メタデータ) (2024-10-17T04:38:53Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Securing Cloud-Based Internet of Things: Challenges and Mitigations [18.36339203254509]
IoT(Internet of Things)は近年顕著な進歩を遂げており、デジタルランドスケープのパラダイムシフトにつながっている。
IoTデバイスは本質的にインターネットに接続されており、様々なタイプの攻撃を受けやすい。
IoTサービスは、悪意のあるアクターや不正なサービスプロバイダによって悪用される可能性のある、機密性の高いユーザデータを扱うことが多い。
論文 参考訳(メタデータ) (2024-02-01T05:55:43Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。