PINN-FEM: A Hybrid Approach for Enforcing Dirichlet Boundary Conditions in Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2501.07765v1
- Date: Tue, 14 Jan 2025 00:47:15 GMT
- Title: PINN-FEM: A Hybrid Approach for Enforcing Dirichlet Boundary Conditions in Physics-Informed Neural Networks
- Authors: Nahil Sobh, Rini Jasmine Gladstone, Hadi Meidani,
- Abstract summary: Physics-Informed Neural Networks (PINNs) solve partial differential equations (PDEs)
We propose a hybrid approach, PINN-FEM, which combines PINNs with finite element methods (FEM) to impose strong Dirichlet boundary conditions via domain decomposition.
This method incorporates FEM-based representations near the boundary, ensuring exact enforcement without compromising convergence.
- Score: 1.1060425537315088
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) solve partial differential equations (PDEs) by embedding governing equations and boundary/initial conditions into the loss function. However, enforcing Dirichlet boundary conditions accurately remains challenging, often leading to soft enforcement that compromises convergence and reliability in complex domains. We propose a hybrid approach, PINN-FEM, which combines PINNs with finite element methods (FEM) to impose strong Dirichlet boundary conditions via domain decomposition. This method incorporates FEM-based representations near the boundary, ensuring exact enforcement without compromising convergence. Through six experiments of increasing complexity, PINN-FEM outperforms standard PINN models, showcasing superior accuracy and robustness. While distance functions and similar techniques have been proposed for boundary condition enforcement, they lack generality for real-world applications. PINN-FEM bridges this gap by leveraging FEM near boundaries, making it well-suited for industrial and scientific problems.
Related papers
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
Physics-informed neural networks (PINNs) have earned high expectations in solving partial differential equations (PDEs)
Previous research observed the propagation failure phenomenon of PINNs.
This paper provides the first formal and in-depth study of propagation failure and its root cause.
arXiv Detail & Related papers (2025-02-02T13:56:38Z) - Coupled Integral PINN for conservation law [1.9720482348156743]
The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations.
This paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions equations using additional neural networks.
arXiv Detail & Related papers (2024-11-18T04:32:42Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Domain decomposition-based coupling of physics-informed neural networks
via the Schwarz alternating method [0.0]
Physics-informed neural networks (PINNs) are appealing data-driven tools for solving and inferring solutions to nonlinear partial differential equations (PDEs)
This paper explores the use of the Schwarz alternating method as a means to couple PINNs with each other and with conventional numerical models.
arXiv Detail & Related papers (2023-11-01T01:59:28Z) - The Hard-Constraint PINNs for Interface Optimal Control Problems [1.6237916898865998]
We show that PINNs can be applied to solve optimal control problems with interfaces and some control constraints.
The resulting algorithm is mesh-free and scalable to different PDEs.
arXiv Detail & Related papers (2023-08-13T07:56:01Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations.
To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $phi$ multiplied by the PINN approximation.
We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries.
arXiv Detail & Related papers (2021-04-17T03:02:52Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.