論文の概要: Symmetry-Aware Generative Modeling through Learned Canonicalization
- arxiv url: http://arxiv.org/abs/2501.07773v1
- Date: Tue, 14 Jan 2025 01:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:46.334412
- Title: Symmetry-Aware Generative Modeling through Learned Canonicalization
- Title(参考訳): 学習正準化による対称性を考慮した生成モデル
- Authors: Kusha Sareen, Daniel Levy, Arnab Kumar Mondal, Sékou-Oumar Kaba, Tara Akhound-Sadegh, Siamak Ravanbakhsh,
- Abstract要約: 対称密度の生成モデリングは、薬物発見から物理シミュレーションまで、AIの科学への応用範囲がある。
我々は、軌道毎の1つの代表要素のみが学習されるように、学習された密度のスライスをモデル化することを提案する。
分子モデルに関する予備実験の結果は有望であり, 改良された試料品質と高速な推論時間を示す。
- 参考スコア(独自算出の注目度): 20.978208085043455
- License:
- Abstract: Generative modeling of symmetric densities has a range of applications in AI for science, from drug discovery to physics simulations. The existing generative modeling paradigm for invariant densities combines an invariant prior with an equivariant generative process. However, we observe that this technique is not necessary and has several drawbacks resulting from the limitations of equivariant networks. Instead, we propose to model a learned slice of the density so that only one representative element per orbit is learned. To accomplish this, we learn a group-equivariant canonicalization network that maps training samples to a canonical pose and train a non-equivariant generative model over these canonicalized samples. We implement this idea in the context of diffusion models. Our preliminary experimental results on molecular modeling are promising, demonstrating improved sample quality and faster inference time.
- Abstract(参考訳): 対称密度の生成モデリングは、薬物発見から物理シミュレーションまで、AIの科学への応用範囲がある。
不変密度に対する既存の生成的モデリングパラダイムは、不変前の不変と同変生成過程を組み合わせたものである。
しかし,この手法は不要であり,同変ネットワークの限界から生じる欠点もいくつかある。
代わりに、我々は密度の学習されたスライスをモデル化し、軌道毎の1つの代表要素のみを学習することを提案する。
これを達成するために、トレーニングサンプルを標準ポーズにマッピングするグループ等価な正準化ネットワークを学び、これらの正準化サンプルに対して非同変生成モデルを訓練する。
この考え方を拡散モデルという文脈で実装する。
分子モデルに関する予備実験の結果は有望であり, 試料の品質が向上し, 推論時間が短縮された。
関連論文リスト
- Deconstructing equivariant representations in molecular systems [6.841858294458366]
本稿では,QM9データセット上での単純な同変グラフ畳み込みモデルを用いた実験について報告する。
我々の重要な発見は、スカラー予測タスクでは、多くの既約表現はトレーニング中に単純に無視されることである。
経験的に,未使用の球面高調波の除去がモデル性能を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-10T17:15:46Z) - Diffeomorphic Measure Matching with Kernels for Generative Modeling [1.2058600649065618]
本稿では、常微分方程式(ODE)と再生成ケルネルヒルベルト空間(RKHS)を用いて、最小分散生成モデリングおよびサンプリングに向けた確率測度を伝達するための枠組みを提案する。
提案手法の理論的解析を行い,モデルの複雑さ,トレーニングセット内のサンプル数,モデルの誤識別という観点から,事前誤差境界を与える。
論文 参考訳(メタデータ) (2024-02-12T21:44:20Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z) - Physical invariance in neural networks for subgrid-scale scalar flux
modeling [5.333802479607541]
物理インフォームドニューラルネットワーク(NN)を用いた3次元乱流非圧縮性流れのサブグリッドスケールスカラーフラックスをモデル化するための新しい戦略を提案する。
提案した変換不変NNモデルは、純粋にデータ駆動モデルとパラメトリックなサブグリッドスケールモデルの両方より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-09T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。