論文の概要: STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via
- arxiv url: http://arxiv.org/abs/2501.07814v1
- Date: Tue, 14 Jan 2025 03:26:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:38.761780
- Title: STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via
- Title(参考訳): STTS-EAD:時空間学習に基づく時系列予測の改善
- Authors: Yuanyuan Liang, Tianhao Zhang, Tingyu Xie,
- Abstract要約: 時系列予測のトレーニングプロセスに異常をシームレスに統合するエンドツーエンドのSTTS-EADを提案する。
提案するSTTS-EADは,時間的情報を用いて予測と異常検出を行う。
提案手法は,トレーニング段階において検出された異常を効果的に処理し,推論段階における予測性能を向上し,ベースラインを著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 7.247017092359663
- License:
- Abstract: Handling anomalies is a critical preprocessing step in multivariate time series prediction. However, existing approaches that separate anomaly preprocessing from model training for multivariate time series prediction encounter significant limitations. Specifically, these methods fail to utilize auxiliary information crucial for identifying latent anomalies associated with spatiotemporal factors during the preprocessing stage. Instead, they rely solely on data distribution for anomaly detection, which can result in the incorrect processing of numerous samples that could otherwise contribute positively to model training. To address this, we propose STTS-EAD, an end-to-end method that seamlessly integrates anomaly detection into the training process of multivariate time series forecasting and aims to improve Spatio-Temporal learning based Time Series prediction via Embedded Anomaly Detection. Our proposed STTS-EAD leverages spatio-temporal information for forecasting and anomaly detection, with the two parts alternately executed and optimized for each other. To the best of our knowledge, STTS-EAD is the first to integrate anomaly detection and forecasting tasks in the training phase for improving the accuracy of multivariate time series forecasting. Extensive experiments on a public stock dataset and two real-world sales datasets from a renowned coffee chain enterprise show that our proposed method can effectively process detected anomalies in the training stage to improve forecasting performance in the inference stage and significantly outperform baselines.
- Abstract(参考訳): 異常の処理は、多変量時系列予測における重要な前処理ステップである。
しかし、多変量時系列予測のためのモデルトレーニングから異常前処理を分離する既存のアプローチは、重大な制限に直面している。
具体的には、これらの手法は、前処理段階における時空間要因に関連する潜時異常を特定するために重要な補助情報を利用することができない。
代わりに、データ分散のみを異常検出に頼っているため、モデルトレーニングに肯定的に寄与する可能性のある多数のサンプルの不正な処理につながる可能性がある。
この問題を解決するために,多変量時系列予測のトレーニングプロセスに異常検出をシームレスに統合し,組込み異常検出による時空間学習に基づく時系列予測を改善することを目的とした,エンドツーエンドのSTTS-EADを提案する。
提案するSTTS-EADは,2つのパーツを交互に実行し,相互に最適化した時空間情報を用いて予測・異常検出を行う。
我々の知る限り、STTS-EADは、多変量時系列予測の精度を向上させるために、トレーニングフェーズに異常検出と予測タスクを統合する最初のものである。
提案手法は, トレーニング段階における検出された異常を効果的に処理し, 推論段階における予測性能を向上し, ベースラインを著しく上回ることを示す。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Successive Model-Agnostic Meta-Learning for Few-Shot Fault Time Series
Prognosis [3.5573601621032944]
本稿では,連続した時系列をメタタスクとして扱う「擬似メタタスク」分割方式を提案する。
連続時系列を擬似メタタスクとして利用することで,データからより包括的な特徴や関係を抽出することができる。
異なるデータセットにまたがる手法の堅牢性を高めるための差分アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-04T02:07:47Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
我々はImDiffusionという新しい異常検出フレームワークを提案する。
ImDiffusionは時系列計算と拡散モデルを組み合わせて、正確で堅牢な異常検出を実現する。
我々はImDiffusionの性能をベンチマークデータセットの広範な実験により評価する。
論文 参考訳(メタデータ) (2023-07-03T04:57:40Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
本稿では,確率的予測精度を高めるために,誤り自己相関を取り入れた新しいトレーニング手法を提案する。
本手法は,モデルトレーニングのためのD$連続時系列セグメントのコレクションとしてミニバッチを構築する。
各ミニバッチ上で時間変化の共分散行列を明示的に学習し、隣接する時間ステップ間の誤差相関を符号化する。
論文 参考訳(メタデータ) (2023-05-26T15:36:59Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Monte Carlo EM for Deep Time Series Anomaly Detection [6.312089019297173]
時系列データは、しばしば外れ値や他の種類の異常によって破壊される。
異常検出と予測への最近のアプローチは、トレーニングデータの異常の割合が無視できるほど小さいと仮定している。
本稿では,既存の時系列モデルを拡張して,トレーニングデータの異常を明示的に考慮する手法を提案する。
論文 参考訳(メタデータ) (2021-12-29T07:52:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。