論文の概要: Monte Carlo EM for Deep Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2112.14436v1
- Date: Wed, 29 Dec 2021 07:52:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 21:07:01.496060
- Title: Monte Carlo EM for Deep Time Series Anomaly Detection
- Title(参考訳): 深部時系列異常検出のためのモンテカルロem
- Authors: Fran\c{c}ois-Xavier Aubet, Daniel Z\"ugner, Jan Gasthaus
- Abstract要約: 時系列データは、しばしば外れ値や他の種類の異常によって破壊される。
異常検出と予測への最近のアプローチは、トレーニングデータの異常の割合が無視できるほど小さいと仮定している。
本稿では,既存の時系列モデルを拡張して,トレーニングデータの異常を明示的に考慮する手法を提案する。
- 参考スコア(独自算出の注目度): 6.312089019297173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data are often corrupted by outliers or other kinds of anomalies.
Identifying the anomalous points can be a goal on its own (anomaly detection),
or a means to improving performance of other time series tasks (e.g.
forecasting). Recent deep-learning-based approaches to anomaly detection and
forecasting commonly assume that the proportion of anomalies in the training
data is small enough to ignore, and treat the unlabeled data as coming from the
nominal data distribution. We present a simple yet effective technique for
augmenting existing time series models so that they explicitly account for
anomalies in the training data. By augmenting the training data with a latent
anomaly indicator variable whose distribution is inferred while training the
underlying model using Monte Carlo EM, our method simultaneously infers
anomalous points while improving model performance on nominal data. We
demonstrate the effectiveness of the approach by combining it with a simple
feed-forward forecasting model. We investigate how anomalies in the train set
affect the training of forecasting models, which are commonly used for time
series anomaly detection, and show that our method improves the training of the
model.
- Abstract(参考訳): 時系列データは、しばしば外れ値や他の種類の異常によって破壊される。
異常点を特定することは、独自の目標(異常検出)、または他の時系列タスク(例えば予測)のパフォーマンスを改善する手段である。
近年のディープラーニングによる異常検出と予測へのアプローチでは、トレーニングデータ内の異常の割合は無視できるほど小さく、ラベルなしデータを名目データ分布から来ているとみなすのが一般的である。
本稿では,既存の時系列モデルを拡張し,トレーニングデータの異常を明示的に考慮する簡易かつ効果的な手法を提案する。
モンテカルロEMを用いたモデルトレーニングにおいて,分布が推定される潜在異常指標変数を用いてトレーニングデータを増強することにより,モデル性能を向上しつつ,異常点を同時に推定する。
簡単なフィードフォワード予測モデルと組み合わせることで,提案手法の有効性を示す。
時系列異常検出に一般的に使用される予測モデルのトレーニングに列車の異常がどのように影響するかを調査し,この手法がモデルのトレーニングを改善することを示す。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - RobustTSF: Towards Theory and Design of Robust Time Series Forecasting
with Anomalies [28.59935971037066]
汚染データからロバストな予測モデルを自動的に学習する手法を開発した。
そこで本研究では,ロバストな予測モデルを学習するための単純かつ効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-03T05:13:09Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
異常検出は、トレーニング観察と何らかの点で異なるサンプルを認識することである。
最近の最先端のディープラーニングに基づく異常検出手法は、計算コスト、複雑さ、不安定な訓練手順、非自明な実装に悩まされている。
我々は、軽量な畳み込みニューラルネットワークを訓練し、異常検出における最先端の性能に到達するための単純な学習手順を活用する。
論文 参考訳(メタデータ) (2022-07-03T20:11:51Z) - MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time
Series [14.236092062538653]
Masked Anomaly Detection (MAD) は多変量時系列異常検出のための汎用的な自己教師型学習タスクである。
入力の一部をランダムにマスキングしてモデルをトレーニングすることで、MADは従来の左から右への次のステップ予測(NSP)タスクよりも改善される。
実験の結果,MADは従来のNSP法よりも優れた異常検出率が得られることが示された。
論文 参考訳(メタデータ) (2022-05-04T14:55:42Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Deep Visual Anomaly detection with Negative Learning [18.79849041106952]
本稿では、異常検出の強化に負の学習概念を用いる、負の学習を伴う異常検出(ADNL)を提案する。
その考え方は、与えられた少数の異常例を用いて生成モデルの再構成能力を制限することである。
このようにして、ネットワークは通常のデータを再構築することを学ぶだけでなく、異常の可能性のある分布から遠く離れた正規分布を囲む。
論文 参考訳(メタデータ) (2021-05-24T01:48:44Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Anomaly Detection at Scale: The Case for Deep Distributional Time Series
Models [14.621700495712647]
我々のアプローチの主な特徴は、実値または実値のベクトルからなる時系列をモデル化するのではなく、実値(またはベクトル)上の確率分布の時系列をモデル化することである。
本手法は,数百万の時系列上の異常検出とスケールのストリーミングに有効である。
我々は,オープンソースの異常検出ツールを,実世界のデータセットに対する平均17%の改善率で上回っていることを示す。
論文 参考訳(メタデータ) (2020-07-30T15:48:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。