論文の概要: Facial Dynamics in Video: Instruction Tuning for Improved Facial Expression Perception and Contextual Awareness
- arxiv url: http://arxiv.org/abs/2501.07978v1
- Date: Tue, 14 Jan 2025 09:52:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:50.454136
- Title: Facial Dynamics in Video: Instruction Tuning for Improved Facial Expression Perception and Contextual Awareness
- Title(参考訳): 映像における顔のダイナミクス: 表情知覚と文脈認識の改善のための指導的チューニング
- Authors: Jiaxing Zhao, Boyuan Sun, Xiang Chen, Xihan Wei,
- Abstract要約: 本稿では,動的表情キャプションに適した命令追従データセットを提案する。
データセットは、5,033本の高品質なビデオクリップを手動で注釈付けし、70,000以上のトークンを含んでいる。
また,このタスクにおける既存のビデオMLLMの性能を評価するためのベンチマークであるFEC-Benchを提案する。
- 参考スコア(独自算出の注目度): 6.634133253472436
- License:
- Abstract: Facial expression captioning has found widespread application across various domains. Recently, the emergence of video Multimodal Large Language Models (MLLMs) has shown promise in general video understanding tasks. However, describing facial expressions within videos poses two major challenges for these models: (1) the lack of adequate datasets and benchmarks, and (2) the limited visual token capacity of video MLLMs. To address these issues, this paper introduces a new instruction-following dataset tailored for dynamic facial expression caption. The dataset comprises 5,033 high-quality video clips annotated manually, containing over 700,000 tokens. Its purpose is to improve the capability of video MLLMs to discern subtle facial nuances. Furthermore, we propose FaceTrack-MM, which leverages a limited number of tokens to encode the main character's face. This model demonstrates superior performance in tracking faces and focusing on the facial expressions of the main characters, even in intricate multi-person scenarios. Additionally, we introduce a novel evaluation metric combining event extraction, relation classification, and the longest common subsequence (LCS) algorithm to assess the content consistency and temporal sequence consistency of generated text. Moreover, we present FEC-Bench, a benchmark designed to assess the performance of existing video MLLMs in this specific task. All data and source code will be made publicly available.
- Abstract(参考訳): 表情キャプションは様々な領域に広く適用されている。
近年、MLLM(Multimodal Large Language Models)の出現は、一般的なビデオ理解タスクにおいて有望であることが示されている。
しかし、ビデオ内の表情を記述することは、(1)適切なデータセットとベンチマークの欠如、(2)ビデオMLLMの限られた視覚トークン能力の欠如、という2つの大きな課題をもたらす。
これらの課題に対処するために,動的表情キャプションに適した命令追従データセットを提案する。
データセットは、5,033本の高品質なビデオクリップを手動で注釈付けし、70,000以上のトークンを含んでいる。
その目的は、微妙な顔のニュアンスを識別するビデオMLLMの能力を改善することである。
さらに,限られた数のトークンを用いて主文字の顔を符号化するFaceTrack-MMを提案する。
このモデルは, 複雑な多人数シナリオにおいても, 顔の追跡や主人物の表情に注目する上で, 優れた性能を示す。
さらに、生成したテキストの内容の一貫性と時間的順序の整合性を評価するために、イベント抽出、関係分類、最長コモンシーケンス(LCS)アルゴリズムを組み合わせた新しい評価基準を導入する。
さらに,このタスクにおける既存のビデオMLLMの性能を評価するためのベンチマークであるFEC-Benchを提案する。
すべてのデータとソースコードが公開されます。
関連論文リスト
- Face-MLLM: A Large Face Perception Model [53.9441375205716]
マルチモーダルな大規模言語モデル(MLLM)は、幅広い視覚言語タスクにおいて有望な結果を得たが、人間の顔を知覚し理解する能力はめったに研究されていない。
本研究では,顔認識タスクにおける既存のMLLMを包括的に評価する。
本モデルは,5つの顔認識タスクにおいて,従来のMLLMを超えている。
論文 参考訳(メタデータ) (2024-10-28T04:19:32Z) - Text-Guided Video Masked Autoencoder [12.321239366215426]
本稿では,ペア字幕に高い対応で映像領域をマスキングする新しいテキスト誘導マスキングアルゴリズム(TGM)を提案する。
既存のマスキングアルゴリズム、統一MAE、マスキングビデオテキストコントラスト学習により、純粋なMAEと比較して下流性能が向上することを示す。
論文 参考訳(メタデータ) (2024-08-01T17:58:19Z) - FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs [5.35588281968644]
適応器を用いた動的顔表情認識のためのマルチモーダルきめ細粒度CLIP(Fine CLIPER)を提案する。
我々のFine CLIPERは、パラメータが少ないDFEW、FERV39k、MAFWデータセットで調整可能なSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-07-02T10:55:43Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
ビデオ言語タスクは空間的・時間的理解を必要とし、かなりの計算を必要とする。
本研究は,画像テキスト事前学習MLLMをモーメント検索に活用することの驚くべき有効性を示す。
我々は、Charades-STA、QVHighlights、ActivityNet Captionsといった広く使われているベンチマーク上で、新しい最先端のモーメント検索を実現する。
論文 参考訳(メタデータ) (2024-06-26T06:59:09Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - StoryGPT-V: Large Language Models as Consistent Story Visualizers [39.790319429455856]
生成モデルは、テキストのプロンプトに基づいて、現実的で視覚的に喜ばしい画像を生成する素晴らしい能力を示しています。
しかし、新興のLarge Language Model(LLM)はあいまいな参照をナビゲートする堅牢な推論能力を示している。
遅延拡散(LDM)とLDMの利点を生かしたtextbfStoryGPT-V を導入し,一貫した高品質な画像を生成する。
論文 参考訳(メタデータ) (2023-12-04T18:14:29Z) - Videoprompter: an ensemble of foundational models for zero-shot video
understanding [113.92958148574228]
視覚言語モデル(VLM)は、視覚特徴とテキストベースのクラスラベル表現の類似点を計算することで、クエリビデオの分類を行う。
本稿では、事前学習されたディスクリミVLMと、事前学習された生成ビデオ・テキストモデルと、テキスト・テキストモデルを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-23T19:45:46Z) - Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation [122.63617171522316]
大規模言語モデル(LLM)は、言語における生成タスクの主要なモデルである。
本稿では,ビデオと画像の両方に対して簡潔かつ表現力のあるトークンを生成するために設計されたビデオトークンライザMAGVIT-v2を紹介する。
論文 参考訳(メタデータ) (2023-10-09T14:10:29Z) - Identity-Aware Multi-Sentence Video Description [105.13845996039277]
本稿では,一組のクリップ内に一貫した人物の身元を予測することを目的とした,身元確認の補助的タスクを提案する。
鍵となるコンポーネントの1つは、性別を意識したテキスト表現であり、メインモデルにおける追加の性別予測目標である。
実験の結果,提案したフィリング・イン・ザ・アイデンティティ・モデルは,いくつかのベースラインや最近の研究よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-08-22T09:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。