GDiffRetro: Retrosynthesis Prediction with Dual Graph Enhanced Molecular Representation and Diffusion Generation
- URL: http://arxiv.org/abs/2501.08001v1
- Date: Tue, 14 Jan 2025 10:44:38 GMT
- Title: GDiffRetro: Retrosynthesis Prediction with Dual Graph Enhanced Molecular Representation and Diffusion Generation
- Authors: Shengyin Sun, Wenhao Yu, Yuxiang Ren, Weitao Du, Liwei Liu, Xuecang Zhang, Ying Hu, Chen Ma,
- Abstract summary: Retrosynthesis prediction focuses on identifying reactants capable of a target product.
GDiffRetro integrates the original graph with its corresponding dual graph to represent molecular structures.
For the reactant generation, GDiffRetro employs a conditional diffusion model in 3D to further transform the obtained synthon into a complete reactant.
- Score: 12.425816520496697
- License:
- Abstract: Retrosynthesis prediction focuses on identifying reactants capable of synthesizing a target product. Typically, the retrosynthesis prediction involves two phases: Reaction Center Identification and Reactant Generation. However, we argue that most existing methods suffer from two limitations in the two phases: (i) Existing models do not adequately capture the ``face'' information in molecular graphs for the reaction center identification. (ii) Current approaches for the reactant generation predominantly use sequence generation in a 2D space, which lacks versatility in generating reasonable distributions for completed reactive groups and overlooks molecules' inherent 3D properties. To overcome the above limitations, we propose GDiffRetro. For the reaction center identification, GDiffRetro uniquely integrates the original graph with its corresponding dual graph to represent molecular structures, which helps guide the model to focus more on the faces in the graph. For the reactant generation, GDiffRetro employs a conditional diffusion model in 3D to further transform the obtained synthon into a complete reactant. Our experimental findings reveal that GDiffRetro outperforms state-of-the-art semi-template models across various evaluative metrics.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlign is a novel chemical reaction representation learning model for various organic reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction.
We introduce a reaction-center-aware attention mechanism that enables the model to concentrate on key functional groups.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - RetroDiff: Retrosynthesis as Multi-stage Distribution Interpolation [32.643400484143605]
We introduce Retrosynthesis (RetroDiff), a novel diffusion-based method designed to address this problem.
Our key innovation is to develop a multi-stage diffusion process.
Experimental results on the benchmark have demonstrated the superiority of our method over all other semi-template methods.
arXiv Detail & Related papers (2023-11-23T16:08:52Z) - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [32.66694406638287]
We propose a new joint 2D and 3D diffusion model (JODO) that generates molecules with atom types, formal charges, bond information, and 3D coordinates.
Our model can also be extended for inverse molecular design targeting single or multiple quantum properties.
arXiv Detail & Related papers (2023-05-21T04:49:53Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
We propose a novel end-to-end graph generation model for retrosynthesis prediction.
It sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants.
Experiments on a benchmark dataset show that the proposed model significantly outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2022-09-27T06:29:35Z) - Modeling Diverse Chemical Reactions for Single-step Retrosynthesis via
Discrete Latent Variables [43.900173434781905]
The goal of single-step retrosynthesis is to identify the possible reactants that lead to the synthesis of the target product in one reaction.
Existing sequence-based retrosynthetic methods treat the product-to-reactant retrosynthesis as a sequence-to-sequence translation problem.
We propose RetroDVCAE, which incorporates conditional variational autoencoders into single-step retrosynthesis and associates discrete latent variables with the generation process.
arXiv Detail & Related papers (2022-08-10T14:50:32Z) - Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction
Representation [70.97737157902947]
There is currently no universal and widely adopted method for robustly representing chemical reactions.
Here we exploit graph-based representations of molecular structures to develop and test a hypergraph attention neural network approach.
We evaluate this hypergraph representation in three experiments using three independent data sets of chemical reactions.
arXiv Detail & Related papers (2022-01-02T12:33:10Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
Retrosynthesis prediction is a fundamental problem in organic synthesis.
This paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction.
Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
arXiv Detail & Related papers (2020-06-12T09:40:42Z) - A Graph to Graphs Framework for Retrosynthesis Prediction [42.99048270311063]
A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule.
We propose a novel template-free approach called G2Gs by transforming a target molecular graph into a set of reactant molecular graphs.
G2Gs significantly outperforms existing template-free approaches by up to 63% in terms of the top-1 accuracy.
arXiv Detail & Related papers (2020-03-28T06:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.