UFGraphFR: An attempt at a federated recommendation system based on user text characteristics
- URL: http://arxiv.org/abs/2501.08044v2
- Date: Wed, 16 Apr 2025 07:34:25 GMT
- Title: UFGraphFR: An attempt at a federated recommendation system based on user text characteristics
- Authors: Xudong Wang,
- Abstract summary: We propose a graph-based federated recommendation framework that constructs a user graph based on clients' embedded text features.<n>UFGraphFR achieves competitive accuracy compared to centralized and state-of-the-art federated baselines while preserving user privacy.
- Score: 8.025162796966834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, limiting their effectiveness. To address this, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual descriptions exhibit similar preferences. UFGraphFR introduces two key components: a privacy-preserving user relationship graph built from the joint embedding layer's weight matrix without leaking raw user attributes, and a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves competitive accuracy compared to centralized and state-of-the-art federated baselines while preserving user privacy. Code is available at https://github.com/trueWangSyutung/UFGraphFR
Related papers
- FedCIA: Federated Collaborative Information Aggregation for Privacy-Preserving Recommendation [28.8047308546416]
We introduce the federated collaborative information aggregation (FedCIA) method for privacy-preserving recommendation.
FedCIA allows clients to align their local models without constraining embeddings to a unified vector space.
It mitigates information loss caused by direct summation, preserves the personalized embedding distributions of individual clients, and supports the aggregation of parameter-free models.
arXiv Detail & Related papers (2025-04-19T06:59:34Z) - Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
We propose a framework that leverages user-centric knowledge graphs to enrich personalization.<n>By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraph enhances contextual understanding and output quality.<n>We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable.
arXiv Detail & Related papers (2025-01-04T01:46:49Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.<n>Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector.<n>This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - Learning Social Graph for Inactive User Recommendation [50.090904659803854]
LSIR learns an optimal social graph structure for social recommendation, especially for inactive users.
Experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive user recommendation.
arXiv Detail & Related papers (2024-05-08T03:40:36Z) - Knowledge-Enhanced Recommendation with User-Centric Subgraph Network [38.814514460928386]
We propose Knowledge-enhanced User-Centric subgraph Network (KUCNet) for effective recommendation.
KUCNet is a subgraph learning approach with graph neural network (GNN) for effective recommendation.
Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items.
arXiv Detail & Related papers (2024-03-21T13:09:23Z) - FedRKG: A Privacy-preserving Federated Recommendation Framework via
Knowledge Graph Enhancement [20.214339212091012]
Federated Learning (FL) has emerged as a promising approach for preserving data privacy in recommendation systems by training models locally.
Recent Graph Neural Networks (GNN) have gained popularity in recommendation tasks due to their ability to capture high-order interactions between users and items.
We propose FedRKG, a novel federated recommendation system, where a global knowledge graph (KG) is constructed and maintained on the server using publicly available item information.
arXiv Detail & Related papers (2024-01-20T02:38:21Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - GNN4FR: A Lossless GNN-based Federated Recommendation Framework [13.672867761388675]
Graph neural networks (GNNs) have gained wide popularity in recommender systems.
Our framework achieves full-graph training with complete high-order structure information.
In addition, we use LightGCN to instantiate an example of our framework and show its equivalence.
arXiv Detail & Related papers (2023-07-25T16:55:17Z) - DRIFT: A Federated Recommender System with Implicit Feedback on the
Items [0.0]
DRIFT is a federated architecture for recommender systems, using implicit feedback.
Our learning model is based on a recent algorithm for recommendation with implicit feedbacks SAROS.
Our algorithm is secure, and participants in our federated system cannot guess the interactions made by the user.
arXiv Detail & Related papers (2023-04-17T13:12:33Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
We propose a Federated Graph Recommender System (FedGRec) to mitigate privacy concerns.
In our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions.
We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph.
arXiv Detail & Related papers (2022-10-25T01:08:20Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Federated Learning with Heterogeneous Architectures using Graph
HyperNetworks [154.60662664160333]
We propose a new FL framework that accommodates heterogeneous client architecture by adopting a graph hypernetwork for parameter sharing.
Unlike existing solutions, our framework does not limit the clients to share the same architecture type, makes no use of external data and does not require clients to disclose their model architecture.
arXiv Detail & Related papers (2022-01-20T21:36:25Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
We propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem.
We devise a novel framework textbfFedrated textbfSocial recommendation with textbfGraph neural network (FeSoG)
arXiv Detail & Related papers (2021-11-21T09:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.