論文の概要: UFGraphFR: Graph Federation Recommendation System based on User Text description features
- arxiv url: http://arxiv.org/abs/2501.08044v4
- Date: Tue, 04 Nov 2025 06:26:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:25.955727
- Title: UFGraphFR: Graph Federation Recommendation System based on User Text description features
- Title(参考訳): UFGraphFR:ユーザテキスト記述機能に基づくグラフフェデレーション勧告システム
- Authors: Xudong Wang, Qingbo Hao, Xu Cheng, Yingyuan Xiao,
- Abstract要約: フェデレーション学習は、レコメンデーションシステムのためのプライバシー保護フレームワークを提供する。
従来のフェデレートされたレコメンデーションアプローチは、各ユーザを独立したエンティティとして扱う。
本稿では,3つのキーコンポーネントを持つ新しいフレームワークであるUFGraphFRを提案する。
- 参考スコア(独自算出の注目度): 13.253574095071537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning offers a privacy-preserving framework for recommendation systems by enabling local data processing; however, data localization introduces substantial obstacles. Traditional federated recommendation approaches treat each user as an isolated entity, failing to construct global user relationship graphs that capture collaborative signals, which limits the accuracy of recommendations. To address this limitation, we derive insight from the insight that semantic similarity reflects preference. similarity, which can be used to improve the construction of user relationship graphs. This paper proposes UFGraphFR, a novel framework with three key components: 1) On the client side, private structured data is first transformed into text descriptions. These descriptions are then encoded into semantic vectors using pre-trained models; 2) On the server side, user relationship graphs are securely reconstructed using aggregated model weights without accessing raw data, followed by information propagation through lightweight graph neural networks; 3) On the client side, user behavior sequences are personalized using Transformer architectures. Extensive experiments conducted on four benchmark datasets demonstrate that UFGraphFR significantly outperforms state-of-the-art baselines in both recommendation accuracy and personalization. The framework also maintains robustness across different pre-trained models, as evidenced by the consistent performance metrics obtained. This work provides a practical method for efficient federated recommendations with strict privacy by using semantic vectors, secure user relationship graphs, and personalized behavior sequences. The code is available at: https://github.com/trueWangSyutung/UFGraphFR
- Abstract(参考訳): フェデレーション学習は、ローカルなデータ処理を可能にすることによってレコメンデーションシステムのためのプライバシ保護フレームワークを提供するが、データローカライゼーションにはかなりの障害が伴う。
従来のフェデレートされたレコメンデーションアプローチは、各ユーザを独立したエンティティとして扱い、コラボレーティブなシグナルをキャプチャするグローバルなユーザ関係グラフの構築に失敗し、レコメンデーションの精度を制限します。
この制限に対処するために、意味的類似性は好みを反映しているという洞察から洞察を得る。
類似性は、ユーザ関係グラフの構築を改善するために使用することができる。
本稿では,3つのキーコンポーネントを持つ新しいフレームワークであるUFGraphFRを提案する。
1)クライアント側では、プライベートな構造化データはまずテキスト記述に変換される。
これらの記述は、事前訓練されたモデルを用いて意味ベクトルに符号化される。
2) サーバ側では,ユーザ関係グラフを生データにアクセスせずに集約モデル重みを用いて安全に再構成し,続いて軽量グラフニューラルネットワークによる情報伝達を行う。
3)クライアント側では,Transformerアーキテクチャを用いてユーザ動作シーケンスをパーソナライズする。
4つのベンチマークデータセットで実施された大規模な実験は、UFGraphFRが推奨精度とパーソナライゼーションの両方において最先端のベースラインを大幅に上回っていることを示している。
このフレームワークは、得られた一貫したパフォーマンス指標によって証明されたように、さまざまなトレーニング済みモデルの堅牢性も維持する。
本研究は, セマンティックベクター, ユーザ関係グラフ, パーソナライズされた行動シーケンスを用いて, 厳密なプライバシーを持つ効率的なフェデレーションレコメンデーションの実践的手法を提供する。
コードは、https://github.com/trueWangSyutung/UFGraphFRで入手できる。
関連論文リスト
- Far From Sight, Far From Mind: Inverse Distance Weighting for Graph Federated Recommendation [2.8449839307925955]
Dist-FedAvgはグラフフェデレーション学習におけるパーソナライズとアグリゲーション効率を向上させるために設計された,新しい距離ベースアグリゲーション手法である。
本手法は,同種の埋め込みを行うユーザに対して高い集約重みを付与すると同時に,アンカーユーザがローカル更新に大きな影響を与えることを保証する。
論文 参考訳(メタデータ) (2025-07-02T01:57:58Z) - FedCIA: Federated Collaborative Information Aggregation for Privacy-Preserving Recommendation [28.8047308546416]
プライバシー保護のためのフェデレーション・コラボレーティブ・インフォメーション・アグリゲーション(FedCIA)手法を導入する。
FedCIAは、クライアントが埋め込みを統一されたベクトル空間に制約することなく、ローカルモデルを調整できる。
直接和による情報損失を軽減し、個々のクライアントのパーソナライズされた埋め込み分布を保存し、パラメータフリーモデルの集約をサポートする。
論文 参考訳(メタデータ) (2025-04-19T06:59:34Z) - Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-04T01:46:49Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF)は、プライバシを保護する新しいレコメンデーションフレームワークの開発に焦点を当てた新興分野である。
既存のFedCFメソッドは通常、分散協調フィルタリング(CF)アルゴリズムとプライバシ保護メカニズムを組み合わせて、パーソナライズされた情報をユーザ埋め込みベクタに保存する。
本稿では,ユーザのパーソナライズされた情報を潜在変数とニューラルモデルに同時に保存することで,新たなパーソナライズされたFedCF手法を提案する。
論文 参考訳(メタデータ) (2024-08-16T05:49:14Z) - Learning Social Graph for Inactive User Recommendation [50.090904659803854]
LSIRはソーシャルレコメンデーションのための最適なソーシャルグラフ構造を学習する。
実世界のデータセットの実験では、LSIRはNDCGで最大129.58%の大幅な改善を実現している。
論文 参考訳(メタデータ) (2024-05-08T03:40:36Z) - Knowledge-Enhanced Recommendation with User-Centric Subgraph Network [38.814514460928386]
本稿では,知識強化型ユーザ中心サブグラフネットワーク(KUCNet)を効果的に推奨する。
KUCNetはグラフニューラルネットワーク(GNN)を用いたグラフ学習アプローチで、効果的な推奨を行う。
提案手法は,特に新しい項目に対する精度,効率,解釈可能なレコメンデーションを実現する。
論文 参考訳(メタデータ) (2024-03-21T13:09:23Z) - FedRKG: A Privacy-preserving Federated Recommendation Framework via
Knowledge Graph Enhancement [20.214339212091012]
フェデレートラーニング(FL)は、リコメンデーションシステムでデータプライバシをローカルにトレーニングする上で有望なアプローチとして登場した。
最近のグラフニューラルネットワーク(GNN)は、ユーザとアイテム間の高次インタラクションをキャプチャできるため、リコメンデーションタスクで人気を集めている。
本稿では,グローバル知識グラフ(KG)を構築・維持する新しいフェデレーションレコメンデーションシステムであるFedRKGを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:38:21Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - GNN4FR: A Lossless GNN-based Federated Recommendation Framework [13.672867761388675]
グラフニューラルネットワーク(GNN)はレコメンデーションシステムで広く普及している。
本フレームワークは,完全高次構造情報を用いたフルグラフ学習を実現する。
さらに、LightGCNを使ってフレームワークの例をインスタンス化し、その等価性を示す。
論文 参考訳(メタデータ) (2023-07-25T16:55:17Z) - DRIFT: A Federated Recommender System with Implicit Feedback on the
Items [0.0]
DRIFTは、暗黙のフィードバックを使用してレコメンデーションシステムのための連合アーキテクチャである。
我々の学習モデルは、暗黙のフィードバックSAROSを用いた最近のアルゴリズムに基づく。
我々のアルゴリズムは安全であり、当社のフェデレーションシステムの参加者は、ユーザによるインタラクションを推測できない。
論文 参考訳(メタデータ) (2023-04-17T13:12:33Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
ユーザ・ユーザ・項目間の相関を組み込んだグラフ隣接行列を提案する。
ユーザ・ユーザ・イテム相関と項目・イテム相関が組み合わさることで,豊富なインタラクションと不十分なインタラクションを持つユーザのレコメンデーションが向上することを示す。
論文 参考訳(メタデータ) (2023-04-06T19:43:37Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
プライバシー問題を軽減するためのフェデレートグラフレコメンダシステム(FedGRec)を提案する。
本システムでは,ユーザとサーバは,ユーザとアイテムに対する遅延埋め込みを明示的に記憶する。
我々は,遅延埋め込みを相互作用グラフの欠落のプロキシとして用いることの有効性を検証するために,広範な実験的な評価を行った。
論文 参考訳(メタデータ) (2022-10-25T01:08:20Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Federated Learning with Heterogeneous Architectures using Graph
HyperNetworks [154.60662664160333]
パラメータ共有にグラフハイパーネットワークを採用することにより、異種クライアントアーキテクチャに対応する新しいFLフレームワークを提案する。
既存のソリューションとは異なり、当社のフレームワークは、クライアントが同じアーキテクチャタイプを共有することを制限せず、外部データも使用せず、クライアントがモデルアーキテクチャを公開する必要もありません。
論文 参考訳(メタデータ) (2022-01-20T21:36:25Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
本稿では,ソーシャル情報とユーザ・イテムの相互作用を融合させることにより,ソーシャル・レコメンデーションの問題であるソーシャル・リコメンデーションの緩和を提案する。
我々は textbfGraph Neural Network (FeSoG) を用いた textbfFedrated textbfSocial 推薦フレームワークを考案した。
論文 参考訳(メタデータ) (2021-11-21T09:41:39Z) - Embedding Ranking-Oriented Recommender System Graphs [10.74267520911262]
グラフベースのランキング指向推薦フレームワークであるPGRecを提案する。
提案手法の性能評価を行った結果,異なるMovieLensデータセットのNDCG@10において,PGRecはベースラインアルゴリズムよりも3.2%高い性能を示した。
論文 参考訳(メタデータ) (2020-07-31T16:56:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。