論文の概要: Self-Attentive Spatio-Temporal Calibration for Precise Intermediate Layer Matching in ANN-to-SNN Distillation
- arxiv url: http://arxiv.org/abs/2501.08049v1
- Date: Tue, 14 Jan 2025 11:56:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:34.715597
- Title: Self-Attentive Spatio-Temporal Calibration for Precise Intermediate Layer Matching in ANN-to-SNN Distillation
- Title(参考訳): ANN-SNN蒸留における精密中間層マッチングのための自己抑制時空間校正法
- Authors: Di Hong, Yueming Wang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、イベント駆動機構による低消費電力計算を約束している。
SNNはニューラルネットワーク(ANN)に比べて精度が低いことが多い
- 参考スコア(独自算出の注目度): 6.78542444330685
- License:
- Abstract: Spiking Neural Networks (SNNs) are promising for low-power computation due to their event-driven mechanism but often suffer from lower accuracy compared to Artificial Neural Networks (ANNs). ANN-to-SNN knowledge distillation can improve SNN performance, but previous methods either focus solely on label information, missing valuable intermediate layer features, or use a layer-wise approach that neglects spatial and temporal semantic inconsistencies, leading to performance degradation.To address these limitations, we propose a novel method called self-attentive spatio-temporal calibration (SASTC). SASTC uses self-attention to identify semantically aligned layer pairs between ANN and SNN, both spatially and temporally. This enables the autonomous transfer of relevant semantic information. Extensive experiments show that SASTC outperforms existing methods, effectively solving the mismatching problem. Superior accuracy results include 95.12% on CIFAR-10, 79.40% on CIFAR-100 with 2 time steps, and 68.69% on ImageNet with 4 time steps for static datasets, and 97.92% on DVS-Gesture and 83.60% on DVS-CIFAR10 for neuromorphic datasets. This marks the first time SNNs have outperformed ANNs on both CIFAR-10 and CIFAR-100, shedding the new light on the potential applications of SNNs.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、イベント駆動機構による低消費電力計算を約束するが、ニューラルネットワーク(ANN)と比較して精度が低い場合が多い。
ANN-to-SNNの知識蒸留はSNNの性能を向上させることができるが、従来の手法はラベル情報のみに焦点を絞ったり、価値ある中間層の特徴を欠いたり、空間的・時間的意味的不整合を無視して性能を低下させるレイヤワイズアプローチを用いており、これらの制限に対処するため、SASTC(Self-attentive Spatio-temporal calibration)と呼ばれる新しい手法を提案する。
SASTCは自己認識を用いて、空間的にも時間的にも、ANNとSNNのセマンティックに整合した層対を識別する。
これにより、関連する意味情報の自律的転送が可能になる。
大規模な実験により、SASTCは既存の手法よりも優れており、ミスマッチ問題を効果的に解決していることがわかった。
CIFAR-10では95.12%、CIFAR-100では79.40%、ImageNetでは68.69%、静的データセットでは4段階、DVS-Gestureでは97.92%、ニューロモルフィックデータセットでは83.60%である。
これは、SNNがCIFAR-10とCIFAR-100の両方でANNを上回り、SNNの潜在的な応用に新たな光を当てた初めての例である。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - LaSNN: Layer-wise ANN-to-SNN Distillation for Effective and Efficient
Training in Deep Spiking Neural Networks [7.0691139514420005]
スパイキングニューラルネットワーク(SNN)は、事象駆動機構のため、生物学的に現実的で、低消費電力で現実的に有望である。
トレーニングされたANNのパラメータを同じ構造を持つSNNにマッピングすることで、競合精度を得るための変換方式を提案する。
レイヤワイドANN-to-SNN知識蒸留(LaSNN)という新しいSNNトレーニングフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-17T03:49:35Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は低消費電力と時間情報処理の特徴的な特徴から注目されている。
ANN-SNN変換は、SNNに適用するための最も一般的な訓練方法であり、変換されたSNNが大規模データセット上でANNに匹敵するパフォーマンスを達成することを確実にする。
本稿では、異なる変換誤差を評価してこれらの誤りを除去する代わりに、実際のSNN発射速度と所望のSNN発射速度のずれ度を測定するためにオフセットスパイクを定義する。
論文 参考訳(メタデータ) (2023-02-21T14:10:56Z) - Reducing ANN-SNN Conversion Error through Residual Membrane Potential [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は、低消費電力のユニークな特性とニューロモルフィックチップ上の高速コンピューティングにより、広く学術的な注目を集めている。
本稿では,不均一な誤差を詳細に解析し,それを4つのカテゴリに分割する。
本研究では,残膜電位に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-04T04:44:31Z) - Low Latency Conversion of Artificial Neural Network Models to
Rate-encoded Spiking Neural Networks [11.300257721586432]
スパイキングニューラルネットワーク(SNN)は、リソース制約のあるアプリケーションに適している。
典型的なレートエンコードされたSNNでは、グローバルに固定された時間ウィンドウ内の一連のバイナリスパイクを使用してニューロンを発射する。
本研究の目的は、ANNを等価SNNに変換する際の精度を維持しつつ、これを削減することである。
論文 参考訳(メタデータ) (2022-10-27T08:13:20Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Training Deep Spiking Neural Networks [0.0]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)とニューロモルフィックハードウェアは、エネルギー効率を桁違いに高める可能性がある。
CIFAR100およびImagenetteオブジェクト認識データセット上で、ResNet50アーキテクチャでSNNをトレーニングすることが可能であることを示す。
訓練されたSNNは、類似のANNと比較して精度が劣るが、数桁の推論時間ステップを必要とする。
論文 参考訳(メタデータ) (2020-06-08T09:47:05Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。