論文の概要: LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking
- arxiv url: http://arxiv.org/abs/2501.08168v1
- Date: Tue, 14 Jan 2025 14:49:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:21.395668
- Title: LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking
- Title(参考訳): LeapVAD:認知認識とデュアルスキル思考による自動運転の先駆者
- Authors: Yukai Ma, Tiantian Wei, Naiting Zhong, Jianbiao Mei, Tao Hu, Licheng Wen, Xuemeng Yang, Botian Shi, Yong Liu,
- Abstract要約: LeapVADは、運転決定に影響を及ぼす重要な交通要素を特定し、焦点を合わせるための人間中心のメカニズムを実装している。
システムは、論理的推論を通じて駆動経験を蓄積する分析プロセス(System-II)と、微調整と少数ショット学習によってこの知識を洗練するヒューリスティックプロセス(System-I)から構成される。
- 参考スコア(独自算出の注目度): 13.898774643126174
- License:
- Abstract: While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel method based on cognitive perception and dual-process thinking. Our approach implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions. By characterizing these objects through comprehensive attributes - including appearance, motion patterns, and associated risks - LeapVAD achieves more effective environmental representation and streamlines the decision-making process. Furthermore, LeapVAD incorporates an innovative dual-process decision-making module miming the human-driving learning process. The system consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning. LeapVAD also includes reflective mechanisms and a growing memory bank, enabling it to learn from past mistakes and continuously improve its performance in a closed-loop environment. To enhance efficiency, we develop a scene encoder network that generates compact scene representations for rapid retrieval of relevant driving experiences. Extensive evaluations conducted on two leading autonomous driving simulators, CARLA and DriveArena, demonstrate that LeapVAD achieves superior performance compared to camera-only approaches despite limited training data. Comprehensive ablation studies further emphasize its effectiveness in continuous learning and domain adaptation. Project page: https://pjlab-adg.github.io/LeapVAD/.
- Abstract(参考訳): 自動運転技術は目覚ましい進歩を遂げてきたが、データ駆動型アプローチは、推論能力が限られているため、複雑なシナリオに苦戦している。
一方、知識駆動型自律運転システムは視覚言語モデルの普及とともに大きく進化してきた。
本稿では,認知認識と二重プロセス思考に基づく新しい手法である LeapVADを提案する。
当社のアプローチでは,運転決定に影響を与える重要な交通要素を特定し,注目する人的意図のメカニズムを実装している。
これらのオブジェクトを、外観、動きパターン、関連するリスクを含む包括的な属性で特徴付けることで、LeapVADはより効果的な環境表現を実現し、意思決定プロセスを合理化します。
さらに LeapVADには、人間の運転学習プロセスを緩和する革新的なデュアルプロセス意思決定モジュールが組み込まれている。
このシステムは、論理的推論を通じて駆動経験を蓄積する分析プロセス(System-II)と、微調整と少数ショット学習によってこの知識を洗練するヒューリスティックプロセス(System-I)から構成される。
LeapVADには、リフレクティブメカニズムと成長するメモリバンクが含まれており、過去のミスから学び、クローズドループ環境でそのパフォーマンスを継続的に改善することができる。
効率を向上させるため、我々は、関連する運転体験を迅速に検索するためのコンパクトなシーン表現を生成するシーンエンコーダネットワークを開発した。
CARLAとDriveArenaの2つの主要な自動運転シミュレータで実施された大規模な評価により、LeapVADは訓練データに制限があるにもかかわらず、カメラのみのアプローチに比べて優れた性能を発揮することが示された。
包括的アブレーション研究は、継続的な学習とドメイン適応におけるその効果をさらに強調する。
プロジェクトページ: https://pjlab-adg.github.io/LeapVAD/。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
論文 参考訳(メタデータ) (2024-07-17T11:17:20Z) - Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving [33.465785037065594]
本稿では,人間の認知プロセスに触発された自律運転の新しいパラダイムである LeapADを紹介する。
特に LeapADは、意思決定に関連する重要なオブジェクトを選択することで、人間の注意をエミュレートする。
システムは、徹底的な分析と推論のための分析プロセス(System-II)と、迅速な経験的処理のためのヒューリスティックプロセス(System-I)から構成される。
論文 参考訳(メタデータ) (2024-05-24T08:07:28Z) - A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving [21.130543517747995]
本稿では,教師による知識蒸留の枠組みを取り入れたHuman-Like Trajectory Prediction (H)モデルを提案する。
教師」モデルは人間の脳、特に後頭葉と側頭葉の機能の視覚的処理を模倣する。
学生」モデルはリアルタイムのインタラクションと意思決定に焦点を合わせ、正確な予測のために重要な知覚的手がかりを捉えます。
論文 参考訳(メタデータ) (2024-02-29T15:22:26Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
本稿では,ReasoningとReflectionモジュールを組み合わせたDiLuフレームワークを提案する。
大規模な実験は、ダイリューが経験を蓄積し、一般化能力において大きな優位性を示す能力を証明する。
私たちの知識を最大限に活用するために、自動運転車の意思決定において知識駆動能力を活用するのは、私たちは初めてです。
論文 参考訳(メタデータ) (2023-09-28T09:41:35Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Steadily Learn to Drive with Virtual Memory [11.67256846037979]
本稿では,この問題を解決するために,Learning to drive with Virtual Memory (LVM) というアルゴリズムを提案する。
LVMは、高次元情報をコンパクトな潜時状態に圧縮し、潜時ダイナミクスモデルを学び、エージェントの経験をまとめます。
LVMの有効性は、画像入力自律運転タスクによって実証される。
論文 参考訳(メタデータ) (2021-02-16T10:46:52Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
本稿では,自律運転アプリケーションにおける交通信号検知器の精度とロバスト性を評価・理解・改善する視覚分析システム,VATLDを提案する。
歪んだ表現学習は、人間に親しみやすい視覚的要約で人間の認知を強化するために、データ意味を抽出する。
また、視覚分析システムであるVATLDによる様々な性能改善戦略の有効性を実証し、自律運転における安全クリティカルな応用の実践的意義を示す。
論文 参考訳(メタデータ) (2020-09-27T22:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。