論文の概要: PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- arxiv url: http://arxiv.org/abs/2501.08192v1
- Date: Tue, 14 Jan 2025 15:14:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:21.184064
- Title: PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- Title(参考訳): PreSERVE:分散LLMサービングにおけるモデルウェイトとKVキャッシュのプレフェッチ
- Authors: Ahmet Caner Yüzügüler, Jiawei Zhuang, Lukas Cavigelli,
- Abstract要約: 大規模言語モデル (LLMs) は様々なアプリケーションで広く使われているが、その相当な計算要求は大きな課題を生んでいる。
モデル重みに対するメモリリードとKVキャッシュを重畳してLLM推論を最適化する新しいプレフェッチフレームワークであるPreSERVEについて述べる。
- 参考スコア(独自算出の注目度): 2.7309692684728613
- License:
- Abstract: Large language models (LLMs) are widely used across various applications, but their substantial computational requirements pose significant challenges, particularly in terms of HBM bandwidth bottlenecks and inter-device communication overhead. In this paper, we present PRESERVE, a novel prefetching framework designed to optimize LLM inference by overlapping memory reads for model weights and KV-cache with collective communication operations. Through extensive experiments conducted on commercial AI accelerators, we demonstrate up to 1.6x end-to-end speedup on state-of-the-art, open-source LLMs. Additionally, we perform a design space exploration that identifies the optimal hardware configuration for the proposed method, showing a further 1.25x improvement in performance per cost by selecting the optimal L2 cache size. Our results show that PRESERVE has the potential to mitigate the memory bottlenecks and communication overheads, offering a solution to improve the performance and scalability of the LLM inference systems.
- Abstract(参考訳): 大規模言語モデル (LLM) は様々なアプリケーションで広く使われているが、特にHBM帯域幅のボトルネックやデバイス間通信のオーバーヘッドなど、その相当な計算要求は重大な問題を引き起こす。
本稿では,モデル重みに対するメモリリードとKVキャッシュを重畳してLLM推論を最適化する新しいプレフェッチフレームワークであるPreSERVEについて述べる。
商用AIアクセラレータで実施された広範な実験を通じて、最先端のオープンソースのLCM上で、最大1.6倍のエンドツーエンドのスピードアップを実演する。
さらに,提案手法の最適ハードウェア構成を特定する設計空間探索を行い,最適L2キャッシュサイズを選択することにより,コスト毎の性能がさらに1.25倍向上したことを示す。
以上の結果から,PreSERVEはメモリボトルネックや通信オーバーヘッドを軽減し,LLM推論システムの性能とスケーラビリティを向上させるソリューションを提供する可能性が示唆された。
関連論文リスト
- Towards Efficient Optimizer Design for LLM via Structured Fisher Approximation with a Low-Rank Extension [16.037614012166063]
本稿では,Fisher InformationMatrix (FIM) のレンズによる効率的な近似の体系設計に向けて一歩進める。
我々は、多くの最先端の効率的な近似を(フロベニウスノルムの下で)特定の構造的仮定を持つFIMの解と見なせることを示した。
一般性と効率性のバランスをとるための構造的仮定を慎重に選択することを含む,LLMの実用的効率に関する2つの設計勧告を提案する。
論文 参考訳(メタデータ) (2025-02-11T18:27:19Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
論文 参考訳(メタデータ) (2025-01-08T11:37:06Z) - Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs [0.8217552831952]
大きな言語モデル(LLM)は、言語理解と生成に関する考え方を変えました。
LLM量子化によく使われるグループ量子化形式は、計算上のオーバーヘッドとリソース集約型量子化プロセスを持つ。
本稿では,LLMの超低精度量子化のためのグループワイド非一様符号ブックに基づく量子化手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T03:44:29Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
大規模言語モデル(LLM)は人気が高まり、商用アプリケーションで広く使われている。
LLMサービスシステムにおいて、エンドツーエンドのレイテンシに影響を及ぼす大きなボトルネックを特定するために、詳細な分析を行う。
次に,資源効率の高いLLMサービスのための最適化システムであるScaleLLMを提案する。
論文 参考訳(メタデータ) (2024-07-23T23:37:29Z) - Inference Performance Optimization for Large Language Models on CPUs [4.7230692120532485]
大規模言語モデル(LLM)は、様々なタスクにまたがる優れたパフォーマンスと大きな潜在能力を示している。
GPUハードウェアリソースが限られている場合、CPU上の代替オプションを検討することができます。
本稿では,CPU上でのLCMの高速化を目的とした,容易にデプロイ可能な推論性能最適化ソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-10T01:53:49Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
MLLM(Multi-modal Large Language Models)のための新しいパラメータと計算効率のチューニング手法を提案する。
The Efficient Attention Skipping (EAS) method evaluate the attention redundancy and skips the less important MHAs to speed up inference。
実験により、EASは高い性能とパラメータ効率を維持するだけでなく、推論速度を大幅に高速化することが示された。
論文 参考訳(メタデータ) (2024-03-22T14:20:34Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
単純な有効モジュールであるSAM-guidEd refinEment Module (SEEM)を提案する。
この軽量プラグインモジュールは、セマンティック・アウェア機能の生成にアテンションメカニズムを活用するように設計されている。
我々はSEEMをEDVRとBasicVSRの2つの代表的手法に適用し、最小限の実装労力で継続的に性能を向上する。
論文 参考訳(メタデータ) (2023-05-11T02:02:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。