PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- URL: http://arxiv.org/abs/2501.08192v1
- Date: Tue, 14 Jan 2025 15:14:10 GMT
- Title: PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
- Authors: Ahmet Caner Yüzügüler, Jiawei Zhuang, Lukas Cavigelli,
- Abstract summary: Large language models (LLMs) are widely used across various applications, but their substantial computational requirements pose significant challenges.<n>We present PRESERVE, a novel prefetching framework designed to optimize LLM inference by overlapping memory reads for model weights and KV-cache with collective communication operations.
- Score: 2.7309692684728613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are widely used across various applications, but their substantial computational requirements pose significant challenges, particularly in terms of HBM bandwidth bottlenecks and inter-device communication overhead. In this paper, we present PRESERVE, a novel prefetching framework designed to optimize LLM inference by overlapping memory reads for model weights and KV-cache with collective communication operations. Through extensive experiments conducted on commercial AI accelerators, we demonstrate up to 1.6x end-to-end speedup on state-of-the-art, open-source LLMs. Additionally, we perform a design space exploration that identifies the optimal hardware configuration for the proposed method, showing a further 1.25x improvement in performance per cost by selecting the optimal L2 cache size. Our results show that PRESERVE has the potential to mitigate the memory bottlenecks and communication overheads, offering a solution to improve the performance and scalability of the LLM inference systems.
Related papers
- Accelerating LLM Inference Throughput via Asynchronous KV Cache Prefetching [12.993197799897532]
Large Language Models (LLMs) exhibit pronounced memory-bound characteristics during inference due to High Bandwidth Memory (HBM) bandwidth constraints.
We propose an L2 Cache-oriented asynchronous KV Cache prefetching method to break through the memory bandwidth bottleneck in LLM inference through computation-load overlap.
arXiv Detail & Related papers (2025-04-08T09:17:35Z) - Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
Building effective Transformer-based large language models (LLMs) has recently become a research focus.
We compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost.
Our studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs.
arXiv Detail & Related papers (2025-03-12T17:50:42Z) - COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs [81.01082659623552]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.
Their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit.
arXiv Detail & Related papers (2025-02-24T18:42:19Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs [0.8217552831952]
Large language models (LLMs) have transformed the way we think about language understanding and generation.<n>Group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process.<n>We present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions.
arXiv Detail & Related papers (2024-12-23T03:44:29Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Efficient Large Foundation Models Design: A Perspective From Model and System Co-Design [34.12187517908856]
This paper focuses on modern efficient training and inference technologies on foundation models.<n>Model and System Design optimize training and inference from different aspects to save computational resources.
arXiv Detail & Related papers (2024-09-03T15:35:01Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - Inference Performance Optimization for Large Language Models on CPUs [4.7230692120532485]
Large language models (LLMs) have shown exceptional performance and vast potential across diverse tasks.
When GPU hardware resources are limited, we can explore alternative options on CPUs.
In this paper, we introduce an easily deployable inference performance optimization solution aimed at accelerating LLMs on CPUs.
arXiv Detail & Related papers (2024-07-10T01:53:49Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
We propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs)
The Efficient Attention Skipping (EAS) method evaluates the attention redundancy and skips the less important MHAs to speed up inference.
The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed.
arXiv Detail & Related papers (2024-03-22T14:20:34Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.