Realization of a doped quantum antiferromagnet with dipolar tunnelings in a Rydberg tweezer array
- URL: http://arxiv.org/abs/2501.08233v1
- Date: Tue, 14 Jan 2025 16:18:58 GMT
- Title: Realization of a doped quantum antiferromagnet with dipolar tunnelings in a Rydberg tweezer array
- Authors: Mu Qiao, Gabriel Emperauger, Cheng Chen, Lukas Homeier, Simon Hollerith, Guillaume Bornet, Romain Martin, Bastien Gély, Lukas Klein, Daniel Barredo, Sebastian Geier, Neng-Chun Chiu, Fabian Grusdt, Annabelle Bohrdt, Thierry Lahaye, Antoine Browaeys,
- Abstract summary: We realize a doped quantum antiferromagnet with next-nearest neighbour (NNN) tunnelings $t'$ and hard-core bosonic holes using a Rydberg tweezer platform.
We observe dynamical phase separation between hole and spin domains for $|t/J|ll 1$, and demonstrate the formation of repulsively bound hole pairs in a variety of spin backgrounds.
- Score: 2.172651378711048
- License:
- Abstract: Doping an antiferromagnetic Mott insulator is central to our understanding of a variety of phenomena in strongly-correlated electrons, including high-temperature superconductors. To describe the competition between tunneling $t$ of hole dopants and antiferromagnetic (AFM) spin interactions $J$, theoretical and numerical studies often focus on the paradigmatic $t$-$J$ model, and the direct analog quantum simulation of this model in the relevant regime of high-particle density has long been sought. Here, we realize a doped quantum antiferromagnet with next-nearest neighbour (NNN) tunnelings $t'$ and hard-core bosonic holes using a Rydberg tweezer platform. We utilize coherent dynamics between three Rydberg levels, encoding spins and holes, to implement a tunable bosonic $t$-$J$-$V$ model allowing us to study previously inaccessible parameter regimes. We observe dynamical phase separation between hole and spin domains for $|t/J|\ll 1$, and demonstrate the formation of repulsively bound hole pairs in a variety of spin backgrounds. The interference between NNN tunnelings $t'$ and perturbative pair tunneling gives rise to light and heavy pairs depending on the sign of $t$. Using the single-site control allows us to study the dynamics of a single hole in 2D square lattice (anti)ferromagnets. The model we implement extends the toolbox of Rydberg tweezer experiments beyond spin-1/2 models to a larger class of $t$-$J$ and spin-$1$ models.
Related papers
- Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Quantum-interference-induced pairing in antiferromagnetic bosonic $t$-$J$ model [1.5064460450689483]
An antiferromagnetic bosonic $t$-$J$ model is investigated via large-scale density matrix renormalization group calculations.
We find that a pair density wave (PDW) of tightly bound hole pairs coexists with the AFM order forming a supersolid'' at small doping.
The pairing order collapses at larger doping to a superfluid of single-boson condensation with the spin background to a ferromagnetic (FM) order simultaneously.
arXiv Detail & Related papers (2024-09-23T18:00:04Z) - Flux-Tunable Regimes and Supersymmetry in Twisted Cuprate Heterostructures [39.58317527488534]
Two Josephson junctions are integrated in a SQuID circuit threaded by a magnetic flux.
We show that the flowermon qubit regime is maintained up to a finite critical value of the magnetic field.
The interplay between the inherent twisted d-wave nature of the order parameter and the external magnetic flux enables the implementation of different artificial atoms.
arXiv Detail & Related papers (2024-05-06T13:27:19Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Waveguide quantum electrodynamics at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Scattering theory of mesons in doped antiferromagnetic Mott insulators: Multichannel perspective and Feshbach resonance [0.0]
Superconductivity at comparatively high temperatures upon hole doping an antiferromagnetic (AFM) Mott insulator.
Recently, it has been proposed that at strong coupling and low doping, the fundamental one- and two-hole meson-type constituents -- magnetic polarons and bipolaronic pairs -- likely realize an emergent Feshbach resonance.
arXiv Detail & Related papers (2023-12-05T18:59:52Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Antiferromagnetic bosonic $t$-$J$ models and their quantum simulation in tweezer arrays [0.0]
We propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states.
By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-$T_c$ cuprates can be realized.
arXiv Detail & Related papers (2023-05-03T17:59:59Z) - Interacting holes in Si and Ge double quantum dots: from a multiband
approach to an effective-spin picture [0.0]
We investigate two-hole states in prototypical coupled Si and Ge quantum dots via different theoretical approaches.
We find that, in the weak interdot regime, the ground state and first excited multiplet of the two-hole system display -- unlike their electronic counterparts -- a high degree of $J$-mixing.
The light-hole component additionally induces $M$-mixing and a weak coupling between spinors characterized by different permutational symmetries.
arXiv Detail & Related papers (2021-04-15T19:18:50Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.