Addressing the sustainable AI trilemma: a case study on LLM agents and RAG
- URL: http://arxiv.org/abs/2501.08262v1
- Date: Tue, 14 Jan 2025 17:21:16 GMT
- Title: Addressing the sustainable AI trilemma: a case study on LLM agents and RAG
- Authors: Hui Wu, Xiaoyang Wang, Zhong Fan,
- Abstract summary: Large language models (LLMs) have demonstrated significant capabilities, but their widespread deployment and more advanced applications raise critical sustainability challenges.
We propose the concept of the Sustainable AI Trilemma, highlighting the tensions between AI capability, digital equity, and environmental sustainability.
- Score: 7.6212949300713015
- License:
- Abstract: Large language models (LLMs) have demonstrated significant capabilities, but their widespread deployment and more advanced applications raise critical sustainability challenges, particularly in inference energy consumption. We propose the concept of the Sustainable AI Trilemma, highlighting the tensions between AI capability, digital equity, and environmental sustainability. Through a systematic case study of LLM agents and retrieval-augmented generation (RAG), we analyze the energy costs embedded in memory module designs and introduce novel metrics to quantify the trade-offs between energy consumption and system performance. Our experimental results reveal significant energy inefficiencies in current memory-augmented frameworks and demonstrate that resource-constrained environments face disproportionate efficiency penalties. Our findings challenge the prevailing LLM-centric paradigm in agent design and provide practical insights for developing more sustainable AI systems.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - A Survey of Sustainability in Large Language Models: Applications, Economics, and Challenges [0.7889270818022226]
Large Language Models (LLMs) have transformed numerous domains by providing advanced capabilities in natural language understanding, generation, and reasoning.
Despite their groundbreaking applications across industries such as research, healthcare, and creative media, their rapid adoption raises critical concerns regarding sustainability.
This survey paper examines the environmental, economic, and computational challenges associated with LLMs, focusing on energy consumption, carbon emissions, and resource utilization in data centers.
arXiv Detail & Related papers (2024-12-06T05:20:04Z) - Energy-Aware Dynamic Neural Inference [39.04688735618206]
We introduce an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage.
We show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy.
We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers.
arXiv Detail & Related papers (2024-11-04T16:51:22Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
This paper introduces MELODI, a framework crafted to monitor and analyze the energy consumed during large language models inference processes.
The dataset, generated using MELODI, encompasses a broad spectrum of LLM deployment frameworks, multiple language models, and extensive prompt datasets.
Our findings indicate substantial disparities in energy efficiency, suggesting ample scope for optimization and adoption of sustainable measures.
arXiv Detail & Related papers (2024-07-04T12:16:28Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
Machine learning (ML) has seen tremendous advancements, but its environmental footprint remains a concern.
Acknowledging the growing environmental impact of ML this paper investigates Green ML.
arXiv Detail & Related papers (2024-06-20T13:59:34Z) - EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems [1.0923877073891446]
Self-adaptation techniques, recognized for their potential in energy savings within software systems, have yet to be extensively explored in Machine Learning-Enabled Systems.
This research underscores the feasibility of enhancing MLS sustainability through intelligent runtime adaptations.
arXiv Detail & Related papers (2024-04-17T14:12:47Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
We introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework.
We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space.
arXiv Detail & Related papers (2022-06-13T03:41:31Z) - Reinforcement Learning through Active Inference [62.997667081978825]
We show how ideas from active inference can augment traditional reinforcement learning approaches.
We develop and implement a novel objective for decision making, which we term the free energy of the expected future.
We demonstrate that the resulting algorithm successfully exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
arXiv Detail & Related papers (2020-02-28T10:28:21Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.