論文の概要: Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
- arxiv url: http://arxiv.org/abs/2501.08305v2
- Date: Fri, 17 Jan 2025 08:56:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:23.168344
- Title: Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
- Title(参考訳): 多変量時系列分類のためのベンチマークグラフ表現とグラフニューラルネットワーク
- Authors: Wennuo Yang, Shiling Wu, Yuzhi Zhou, Cheng Luo, Xilin He, Weicheng Xie, Linlin Shen, Siyang Song,
- Abstract要約: 本稿では,広く使用されている3つのノード特徴定義戦略,4つのエッジ特徴学習戦略,5つのGNNアーキテクチャの有効性を検証した最初のベンチマークを示す。
実験の結果,ノード特徴がMTSC性能に著しく影響を及ぼすのに対し,エッジ特徴の可視化は,適応的エッジ学習が他のエッジ特徴学習法より優れていることを示す。
- 参考スコア(独自算出の注目度): 30.8017693361366
- License:
- Abstract: Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relationship among variables in MTS usually contain crucial cues, a large number of graph-based MTSC approaches have been proposed, as the graph topology and edges can explicitly represent relationships among variables (channels), where not only various MTS graph representation learning strategies but also different Graph Neural Networks (GNNs) have been explored. Despite such progresses, there is no comprehensive study that fairly benchmarks and investigates the performances of existing widely-used graph representation learning strategies/GNN classifiers in the application of different MTSC tasks. In this paper, we present the first benchmark which systematically investigates the effectiveness of the widely-used three node feature definition strategies, four edge feature learning strategies and five GNN architecture, resulting in 60 different variants for graph-based MTSC. These variants are developed and evaluated with a standardized data pipeline and training/validation/testing strategy on 26 widely-used suspensor MTSC datasets. Our experiments highlight that node features significantly influence MTSC performance, while the visualization of edge features illustrates why adaptive edge learning outperforms other edge feature learning methods. The code of the proposed benchmark is publicly available at \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}.
- Abstract(参考訳): 多変量時系列分類(MTSC)は、複雑な時間データの分析を可能にし、医療から金融まで、様々な現実世界のアプリケーションにおいて基礎となる。
グラフトポロジとエッジは, MTSグラフ表現学習戦略だけでなく, 異なるグラフニューラルネットワーク(GNN)も探索されている変数(チャネル)間の関係を明示的に表現できるため, MTSにおける変数間の関係は通常重要な手がかりを含むため, 多数のグラフベースのMTSCアプローチが提案されている。
このような進歩にもかかわらず、MTSCタスクの異なる適用において、既存の広く使われているグラフ表現学習戦略/GNN分類器の性能をベンチマークし、調査する包括的な研究は存在しない。
本稿では,広く使用されている3つのノード特徴定義戦略,4つのエッジ特徴学習戦略,および5つのGNNアーキテクチャの有効性を体系的に検討した最初のベンチマークについて述べる。
これらの変種は、標準化されたデータパイプラインと、広く使用されている26のMTSCデータセット上でのトレーニング/検証/テスト戦略を用いて開発・評価されている。
実験の結果,ノード特徴がMTSC性能に著しく影響を及ぼすのに対し,エッジ特徴の可視化は,適応的エッジ学習が他のエッジ特徴学習法より優れていることを示す。
提案されたベンチマークのコードは、 \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}で公開されている。
関連論文リスト
- Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
本稿では,グラフニューラルネットワーク(GNN)におけるメッセージ伝搬戦略の学習問題について検討する。
本稿では,GNNパラメータの最大類似度推定を支援するために,最適伝搬ステップを潜時変数として導入する。
提案フレームワークは,GNNにおけるメッセージのパーソナライズおよび解釈可能な伝達戦略を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-10-01T15:09:59Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Missing Data Estimation in Temporal Multilayer Position-aware Graph
Neural Network (TMP-GNN) [5.936402320555635]
TMP-GNN(Temporal Multilayered Position-aware Graph Neural Network)は,動的グラフに対するノード埋め込み手法である。
時間的多層グラフの2つの異なる表現に対するTMP-GNNの性能評価を行った。
我々は、TMP-GNNをディープラーニングフレームワークに組み込んで、欠落したデータを推定し、その性能を対応する有能なGNNと比較する。
論文 参考訳(メタデータ) (2021-08-07T08:32:40Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
既存のディープラーニングに基づくMTSC技術は、主に単一時系列の時間依存性に関係している。
MTSの表現的グローバル表現を得るために,グラフプーリングに基づく新しいフレームワークMTPoolを提案する。
10のベンチマークデータセットの実験では、MTSCタスクでMTPoolが最先端の戦略を上回っている。
論文 参考訳(メタデータ) (2020-10-12T12:36:47Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。