論文の概要: FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2501.08440v1
- Date: Tue, 14 Jan 2025 21:08:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:41.143145
- Title: FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection
- Title(参考訳): FARE: レーダーによる顔認識とアウト・オブ・ディストリビューション検出のためのディープラーニングベースのフレームワーク
- Authors: Sabri Mustafa Kahya, Boran Hamdi Sivrikaya, Muhammet Sami Yavuz, Eckehard Steinbach,
- Abstract要約: 短距離FMCWレーダを用いた顔認識とアウト・オブ・ディストリビューション検出のための新しいパイプラインを提案する。
提案システムは、レンジドップラーとマイクロレンジドップラー画像を利用する。
本手法は99.30%のID分類精度と96.91%のOOD検出AUROCを実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
- Abstract(参考訳): そこで本研究では,近距離FMCWレーダを用いた顔認識とアウト・オブ・ディストリビューション(OOD)検出のための新しいパイプラインを提案する。
提案システムは、レンジドップラーとマイクロレンジドップラー画像を利用する。
アーキテクチャは、OOD検出専用の中間経路(IP)を補完する、ID(In-distriion)顔の分類に責任を持つプライマリパス(PP)を特徴としている。
まず、PPは三重項損失を用いてトレーニングされ、ID顔分類を最適化する。
第2段階では、PPは凍結され、IPsを構成する単純な線形オートエンコーダネットワークは、OOD検出のために特別に訓練される。
60GHzのFMCWレーダで生成されたデータセットを用いて,99.30%のID分類精度と96.91%のOOD検出AUROCを実現する。
関連論文リスト
- Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation [48.265859815346985]
RFサンプルとラベルを限定した環境下でのレーダ信号認識を強化するための自己教師付き学習(SSL)手法を提案する。
具体的には,各種RF領域のベースバンド内位相および2次(I/Q)信号に対する事前学習マスク付きオートエンコーダ(MAE)について検討する。
その結果,ドメイン適応型軽量自己教師型ResNetモデルでは,1ショットの分類精度が最大17.5%向上した。
論文 参考訳(メタデータ) (2025-01-07T01:35:56Z) - FOOD: Facial Authentication and Out-of-Distribution Detection with Short-Range FMCW Radar [0.0]
本稿では,短距離FMCWレーダを用いた顔認証とオフ・オブ・ディストリビューション(OOD)検出フレームワークを提案する。
本研究パイプラインは,IDサンプルの正しいクラスを共同で推定し,OODサンプルを検出して不正確な予測を防止する。
また,60GHz短距離FMCWレーダを用いて収集したデータセットに対して,分布しない顔の識別における平均分類精度98.07%を実現した。
論文 参考訳(メタデータ) (2024-06-06T23:08:03Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - HAROOD: Human Activity Classification and Out-of-Distribution Detection
with Short-Range FMCW Radar [0.0]
本研究では,短距離FMCWレーダを用いた人間活動分類器とアウト・オブ・ディストリビューション検出器としてHAROODを提案する。
人間の立位、立位、歩行活動を分類し、OODとして他の移動物体や静止物体を検出することを目的としている。
60GHz短距離FMCWレーダーで収集したデータセットでは、平均的な分類精度は96.51%である。
論文 参考訳(メタデータ) (2023-12-14T12:56:28Z) - HAct: Out-of-Distribution Detection with Neural Net Activation
Histograms [7.795929277007233]
本稿では,OOD検出のための新しい記述子HActを提案する。すなわち,入力データの影響下でのニューラルネットワーク層の出力値の確率分布(ヒストグラムで近似)について述べる。
複数の画像分類ベンチマークにおいて,HActはOOD検出における最先端技術よりもはるかに精度が高いことを示す。
論文 参考訳(メタデータ) (2023-09-09T16:22:18Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - MCROOD: Multi-Class Radar Out-Of-Distribution Detection [0.0]
本研究は,レーダレンジドップラー画像(RDI)を用いた再構成型マルチクラスOOD検出器を提案する。
この検出器は、OODとして座っている人、立っている人、歩いている人以外の移動物体を分類することを目的としている。
また,呼吸などの人体運動を簡易かつ効果的に検出する前処理技術も提供する。
論文 参考訳(メタデータ) (2023-03-10T22:44:24Z) - Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW
Radar [0.0]
本稿では,レーダ領域で動作する新しい再構成型OOD検出器を提案する。
提案手法はオートエンコーダ(AE)とその潜在表現を利用してOODサンプルを検出する。
我々は60GHz短距離FMCWレーダを用いて収集したデータセットに対して90.72%のAUROCを達成した。
論文 参考訳(メタデータ) (2023-02-27T23:03:51Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。