Watermarking in Diffusion Model: Gaussian Shading with Exact Diffusion Inversion via Coupled Transformations (EDICT)
- URL: http://arxiv.org/abs/2501.08604v1
- Date: Wed, 15 Jan 2025 06:04:18 GMT
- Title: Watermarking in Diffusion Model: Gaussian Shading with Exact Diffusion Inversion via Coupled Transformations (EDICT)
- Authors: Krishna Panthi,
- Abstract summary: This paper introduces a novel approach to enhance the performance of Gaussian Shading.<n>We propose to leverage EDICT's ability to derive exact inverse mappings to refine this process.<n>Our method involves duplicating the watermark-infused noisy latent and employing a reciprocal, alternating denoising and noising scheme.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to enhance the performance of Gaussian Shading, a prevalent watermarking technique, by integrating the Exact Diffusion Inversion via Coupled Transformations (EDICT) framework. While Gaussian Shading traditionally embeds watermarks in a noise latent space, followed by iterative denoising for image generation and noise addition for watermark recovery, its inversion process is not exact, leading to potential watermark distortion. We propose to leverage EDICT's ability to derive exact inverse mappings to refine this process. Our method involves duplicating the watermark-infused noisy latent and employing a reciprocal, alternating denoising and noising scheme between the two latents, facilitated by EDICT. This allows for a more precise reconstruction of both the image and the embedded watermark. Empirical evaluation on standard datasets demonstrates that our integrated approach yields a slight, yet statistically significant improvement in watermark recovery fidelity. These results highlight the potential of EDICT to enhance existing diffusion-based watermarking techniques by providing a more accurate and robust inversion mechanism. To the best of our knowledge, this is the first work to explore the synergy between EDICT and Gaussian Shading for digital watermarking, opening new avenues for research in robust and high-fidelity watermark embedding and extraction.
Related papers
- PT-Mark: Invisible Watermarking for Text-to-image Diffusion Models via Semantic-aware Pivotal Tuning [19.170393134039568]
We present Semantic-aware Pivotal Tuning Watermarks (PT-Mark)
PT-Mark preserves both the semantics of diffusion images and the traceability of the watermark.
It achieves a 10% improvement in the performance of semantic preservation compared to state-of-the-art watermarking methods.
arXiv Detail & Related papers (2025-04-15T04:25:57Z) - Bridging Knowledge Gap Between Image Inpainting and Large-Area Visible Watermark Removal [57.84348166457113]
We introduce a novel feature adapting framework that leverages the representation capacity of a pre-trained image inpainting model.
Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model.
For relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process.
arXiv Detail & Related papers (2025-04-07T02:37:14Z) - Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [10.726987194250116]
We introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs.
Our theoretical and empirical analyses show that Shallow Diffuse greatly enhances the consistency of data generation and the detectability of the watermark.
arXiv Detail & Related papers (2024-10-28T14:51:04Z) - Image Watermarks are Removable Using Controllable Regeneration from Clean Noise [26.09012436917272]
A critical attribute of watermark techniques is their robustness against various manipulations.
We introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques.
arXiv Detail & Related papers (2024-10-07T20:04:29Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Removing Interference and Recovering Content Imaginatively for Visible
Watermark Removal [63.576748565274706]
This study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework.
RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration.
To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks.
arXiv Detail & Related papers (2023-12-22T02:19:23Z) - Robust Image Watermarking based on Cross-Attention and Invariant Domain
Learning [1.6589012298747952]
This paper explores a robust image watermarking methodology by harnessing cross-attention and invariant domain learning.
We design a watermark embedding technique utilizing a multi-head cross attention mechanism, enabling information exchange between the cover image and watermark.
Second, we advocate for learning an invariant domain representation that encapsulates both semantic and noise-invariant information concerning the watermark.
arXiv Detail & Related papers (2023-10-09T04:19:27Z) - WMFormer++: Nested Transformer for Visible Watermark Removal via Implict
Joint Learning [68.00975867932331]
Existing watermark removal methods mainly rely on UNet with task-specific decoder branches.
We introduce an implicit joint learning paradigm to holistically integrate information from both branches.
The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-08-20T07:56:34Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.