論文の概要: Towards Aligned Data Forgetting via Twin Machine Unlearning
- arxiv url: http://arxiv.org/abs/2501.08615v2
- Date: Thu, 23 Jan 2025 05:38:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:08.203112
- Title: Towards Aligned Data Forgetting via Twin Machine Unlearning
- Title(参考訳): ツインマシン・アンラーニングによるアラインドデータ収集に向けて
- Authors: Zhenxing Niu, Haoxuan Ji, Yuyao Sun, Zheng Lin, Fei Gao, Yuhang Wang, Haichao Gao,
- Abstract要約: 「データの忘れ」はしばしば、そのようなデータに対する分類精度をゼロにするものとして解釈される。
本稿では,2つの未学習問題を元の未学習問題に対応付けて定義する,TMU(Twin Machine Unlearning)アプローチを提案する。
提案手法は未学習モデルと金モデルとのアライメントを著しく向上させる。
- 参考スコア(独自算出の注目度): 19.84265071215051
- License:
- Abstract: Modern privacy regulations have spurred the evolution of machine unlearning, a technique enabling a trained model to efficiently forget specific training data. In prior unlearning methods, the concept of "data forgetting" is often interpreted and implemented as achieving zero classification accuracy on such data. Nevertheless, the authentic aim of machine unlearning is to achieve alignment between the unlearned model and the gold model, i.e., encouraging them to have identical classification accuracy. On the other hand, the gold model often exhibits non-zero classification accuracy due to its generalization ability. To achieve aligned data forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. Consequently, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data forgetting. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model.
- Abstract(参考訳): 現代のプライバシー規制は、訓練されたモデルが特定のトレーニングデータを効率的に忘れることができる技術である、機械学習の進化を促している。
従来の未学習の手法では、「データの忘れ」という概念はしばしば解釈され、そのようなデータに対する分類精度をゼロにするものとして実装される。
それでも、マシン・アンラーニングの真の目的は、未学習モデルとゴールドモデルとの整合性、すなわち、同一の分類精度を持つことを奨励することである。
一方、金モデルはしばしばその一般化能力のためにゼロでない分類精度を示す。
そこで本研究では,TMU(Twin Machine Unlearning)アプローチを提案する。
これにより、ツイン問題で訓練された一般化ラベル予測器を元の問題に移すことができ、整列データ忘れを容易にすることができる。
包括的実証実験により,本手法は未学習モデルと金モデルとのアライメントを著しく向上させることが示された。
関連論文リスト
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Towards Aligned Data Removal via Twin Machine Unlearning [30.070660418732807]
現代のプライバシー規制は、機械学習の進化を刺激している。
本稿では,2つの未学習問題を元の未学習問題に対応付けて定義する,TMU(Twin Machine Unlearning)アプローチを提案する。
提案手法は未学習モデルと金モデルとのアライメントを著しく向上させる。
論文 参考訳(メタデータ) (2024-08-21T08:42:21Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
AIやデータ規則に従うためには、トレーニングされた機械学習モデルからプライベートまたは著作権のある情報を忘れる必要性がますます高まっている。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
機械学習、すなわち、トレーニングデータのいくつかを忘れるモデルを持つことは、プライバシー法が忘れられる権利の変種を促進するにつれ、ますます重要になっている。
まず、ほぼ未学習のモデルが正確に訓練されたモデルに近いことを証明しようとする、近似的未学習の定義は、異なるデータセットを用いて同じモデルを得ることができるため、正しくないことを示す。
そして、正確なアンラーニングアプローチに目を向け、アンラーニングのクレームの検証方法を尋ねます。
論文 参考訳(メタデータ) (2021-10-22T16:16:56Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。