論文の概要: Disentangled Interleaving Variational Encoding
- arxiv url: http://arxiv.org/abs/2501.08710v1
- Date: Wed, 15 Jan 2025 10:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:23.492053
- Title: Disentangled Interleaving Variational Encoding
- Title(参考訳): アンタングル型インターリービング変分符号化
- Authors: Noelle Y. L. Wong, Eng Yeow Cheu, Zhonglin Chiam,
- Abstract要約: 本稿では,変分オートエンコーダの潜時空間において,元の入力を限界値と条件値の確率分布に分解する原理的手法を提案する。
提案モデルであるDeep Disentangled Interleaving Variationalを提案する。
コーダ(DeepDIVE)は、元の入力から切り離された特徴を学習し、埋め込み空間にクラスタを形成する。
2つの公開データセットの実験は、DeepDIVEが元の入力をアンタングルし、元のVAEよりも予測精度が良いことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Conflicting objectives present a considerable challenge in interleaving multi-task learning, necessitating the need for meticulous design and balance to ensure effective learning of a representative latent data space across all tasks without mutual negative impact. Drawing inspiration from the concept of marginal and conditional probability distributions in probability theory, we design a principled and well-founded approach to disentangle the original input into marginal and conditional probability distributions in the latent space of a variational autoencoder. Our proposed model, Deep Disentangled Interleaving Variational Encoding (DeepDIVE) learns disentangled features from the original input to form clusters in the embedding space and unifies these features via the cross-attention mechanism in the fusion stage. We theoretically prove that combining the objectives for reconstruction and forecasting fully captures the lower bound and mathematically derive a loss function for disentanglement using Na\"ive Bayes. Under the assumption that the prior is a mixture of log-concave distributions, we also establish that the Kullback-Leibler divergence between the prior and the posterior is upper bounded by a function minimized by the minimizer of the cross entropy loss, informing our adoption of radial basis functions (RBF) and cross entropy with interleaving training for DeepDIVE to provide a justified basis for convergence. Experiments on two public datasets show that DeepDIVE disentangles the original input and yields forecast accuracies better than the original VAE and comparable to existing state-of-the-art baselines.
- Abstract(参考訳): 対立する目的は、相互に負の影響を受けずに、すべてのタスクにまたがる代表的潜在データ空間の効果的な学習を確保するために、綿密な設計とバランスの必要性を欠くマルチタスク学習の相互運用において大きな課題となる。
確率論における限界確率分布と条件確率分布の概念からインスピレーションを得て、変分オートエンコーダの潜時空間において、元の入力を境界確率分布と条件確率分布にアンタングルする原理的かつしっかりとしたアプローチを設計する。
提案モデルであるDeep Disentangled Interleaving Variational Encoding (DeepDIVE) は,元の入力から切り離された特徴を学習し,埋め込み空間にクラスタを形成する。
理論的には、復元と予測の目的を組み合わさることで、下界を完全に捕捉し、数学的にNa\\ive Bayesを用いた非絡み合いの損失関数を導出する。
前者は対数凹面分布の混合であるという仮定のもと、前と後の間のクルバック・リーブラーの偏差は、交叉エントロピー損失の最小化によって最小化される関数によって上界化され、DeepDIVEのインターリービングトレーニングによるラジアル基底関数(RBF)とクロスエントロピーの採用を知らせ、収束の正当性を提供する。
2つの公開データセットの実験では、DeepDIVEが元の入力をアンタングルし、予測精度が元のVAEよりも良く、既存の最先端ベースラインに匹敵することを示している。
関連論文リスト
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
本稿では,スケーラブルな分散確率的推論アルゴリズムを提案する。
センサネットワークにおける連続変数、難解な後部データ、大規模リアルタイムデータに適用できる。
論文 参考訳(メタデータ) (2023-09-05T22:33:02Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
ニューラルネットワークは、既存のモデルとデータのペアの後方分布を近似するように訓練される。
このアプローチの精度は、高忠実度トレーニングデータの可用性に依存する。
補正ステップは, ソース実験数の変化, ノイズ分散, 先行分布の変化に対して, 償却された変分推論の頑健さを向上することを示す。
論文 参考訳(メタデータ) (2022-07-24T02:38:54Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Distribution Regression with Sliced Wasserstein Kernels [45.916342378789174]
分布回帰のための最初のOTに基づく推定器を提案する。
このような表現に基づくカーネルリッジ回帰推定器の理論的性質について検討する。
論文 参考訳(メタデータ) (2022-02-08T15:21:56Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
生成確率モデルを学習することは、機械学習における中核的な問題である。
本稿では,共同次元化と非パラメトリック密度推定の枠組みを提案する。
提案手法は, 回帰処理, サンプリング, 異常検出において, 極めて有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-06-20T00:38:56Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。