論文の概要: Likelihood-Free Adaptive Bayesian Inference via Nonparametric Distribution Matching
- arxiv url: http://arxiv.org/abs/2505.04603v1
- Date: Wed, 07 May 2025 17:50:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.176363
- Title: Likelihood-Free Adaptive Bayesian Inference via Nonparametric Distribution Matching
- Title(参考訳): 非パラメトリック分布マッチングによる自由適応ベイズ推論
- Authors: Wenhui Sophia Lu, Wing Hung Wong,
- Abstract要約: 本稿では,従来のデータ空間の相違を回避したフレームワークであるAdaptive Bayesian Inference (ABI)を提案する。
ABIは、後続分布間のばらつきを測定する問題を、条件付き量子レグレッションタスクのトラクタブルシーケンスに変換する。
ABIはデータベースであるWasserstein, 要約ベースABC, 最先端の可能性のないシミュレータを著しく上回っていることを実証する。
- 参考スコア(独自算出の注目度): 2.0319002824093015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When the likelihood is analytically unavailable and computationally intractable, approximate Bayesian computation (ABC) has emerged as a widely used methodology for approximate posterior inference; however, it suffers from severe computational inefficiency in high-dimensional settings or under diffuse priors. To overcome these limitations, we propose Adaptive Bayesian Inference (ABI), a framework that bypasses traditional data-space discrepancies and instead compares distributions directly in posterior space through nonparametric distribution matching. By leveraging a novel Marginally-augmented Sliced Wasserstein (MSW) distance on posterior measures and exploiting its quantile representation, ABI transforms the challenging problem of measuring divergence between posterior distributions into a tractable sequence of one-dimensional conditional quantile regression tasks. Moreover, we introduce a new adaptive rejection sampling scheme that iteratively refines the posterior approximation by updating the proposal distribution via generative density estimation. Theoretically, we establish parametric convergence rates for the trimmed MSW distance and prove that the ABI posterior converges to the true posterior as the tolerance threshold vanishes. Through extensive empirical evaluation, we demonstrate that ABI significantly outperforms data-based Wasserstein ABC, summary-based ABC, and state-of-the-art likelihood-free simulators, especially in high-dimensional or dependent observation regimes.
- Abstract(参考訳): 確率が解析的に利用できなくなり、計算が難しくなると、近似ベイズ計算(ABC)が近似後推論の広く使われている方法論として出現するが、高次元の設定や拡散前の計算効率の厳しい問題に悩まされる。
これらの制約を克服するために,従来のデータ空間の相違を回避し,非パラメトリック分布マッチングを通じて後方空間の分布を直接比較するフレームワークであるAdaptive Bayesian Inference (ABI)を提案する。
後方測度に対する新たなMarginally-augmented Sliced Wasserstein (MSW) 距離の活用と量子化表現の活用により、ABIは後方分布間のばらつきを1次元の条件付き量子化回帰タスクのトラクタブルシーケンスに変換する。
さらに,提案した分布を生成密度推定により更新することにより,後部近似を反復的に洗練する適応型拒絶サンプリング手法を提案する。
理論的には、トリミングされたMSW距離に対するパラメトリック収束速度を確立し、許容しきい値が消えるにつれてABI後部が真の後部へ収束することが証明される。
実験的な評価により、ABIはデータベースのWasserstein ABC、要約ベースのABC、そして最先端の可能性のないシミュレーター、特に高次元または高依存性の観測システムにおいて、著しく優れていることを示した。
関連論文リスト
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
償却点推定器は一般に後部推論より優れているが、後者は低次元問題では競争力がある。
実験の結果, 償却点推定器は一般に後部推定より優れているが, 後者は低次元問題では競争力があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T10:00:24Z) - Quasi-Bayes meets Vines [2.3124143670964448]
我々は、スクラーの定理を用いて、準ベイズ予想を高次元に拡張する別の方法を提案する。
提案した準ベイジアンVine (QB-Vine) は完全に非パラメトリックな密度推定器であることを示す。
論文 参考訳(メタデータ) (2024-06-18T16:31:02Z) - Scalable diffusion posterior sampling in infinite-dimensional inverse problems [5.340736751238338]
本研究では,サンプリング中の前方マッピング評価を回避できる拡張拡散後サンプリング法を提案する。
この手法は無限次元拡散モデルに一般化され、厳密な収束解析と高次元CT画像実験によって検証される。
論文 参考訳(メタデータ) (2024-05-24T15:33:27Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Conditional score-based diffusion models for Bayesian inference in
infinite dimensions [4.747324197963405]
そこで本稿では, 無限次元逆問題の後部から, 償却条件付きSDMに基づくサンプリング法を提案する。
解析の重要な部分は、無限次元のSDMを条件設定に拡張するには慎重に検討する必要があることを示すことに集中している。
論文 参考訳(メタデータ) (2023-05-28T15:34:15Z) - Bayesian Renormalization [68.8204255655161]
ベイズ統計的推論にインスパイアされた再正規化に対する完全情報理論的アプローチを提案する。
ベイズ再正規化の主な洞察は、フィッシャー計量が創発的RGスケールの役割を担う相関長を定義することである。
本研究では,ベイズ正規化方式が既存のデータ圧縮法やデータ生成法とどのように関係しているかを考察する。
論文 参考訳(メタデータ) (2023-05-17T18:00:28Z) - Density Estimation with Autoregressive Bayesian Predictives [1.5771347525430772]
密度推定の文脈では、標準的なベイズ的アプローチは、後方予測をターゲットとする。
我々は、データを潜在空間にマッピングする自己回帰ニューラルネットワークを用いて、帯域幅の新たなパラメータ化を開発する。
論文 参考訳(メタデータ) (2022-06-13T20:43:39Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
後補助正規化(PAR)は,モデル構造に関係なく,密度推定器の学習に適用可能である。
単一のニューラルネットワークを用いて逆KL項と相互情報項の両方を推定するPARの統一推定方法を提供する。
論文 参考訳(メタデータ) (2021-02-15T16:59:30Z) - Batch Stationary Distribution Estimation [98.18201132095066]
サンプル遷移の組を与えられたエルゴードマルコフ鎖の定常分布を近似する問題を考える。
与えられたデータに対する補正比関数の復元に基づく一貫した推定器を提案する。
論文 参考訳(メタデータ) (2020-03-02T09:10:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。