論文の概要: MeshMask: Physics-Based Simulations with Masked Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.08738v2
- Date: Thu, 23 Jan 2025 09:13:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:34.946176
- Title: MeshMask: Physics-Based Simulations with Masked Graph Neural Networks
- Title(参考訳): MeshMask: Masked Graph Neural Networkによる物理シミュレーション
- Authors: Paul Garnier, Vincent Lannelongue, Jonathan Viquerat, Elie Hachem,
- Abstract要約: 本稿では,計算流体力学(CFD)問題に適用したグラフニューラルネットワーク(GNN)のための新しいマスク付き事前学習手法を提案する。
事前学習中に入力メッシュノードの40%をランダムにマスキングすることにより、複雑な流体力学の堅牢な表現を学習せざるを得ない。
提案手法は,メッシュ当たり25万ノード以上の3次元頭蓋内動脈瘤シミュレーションの挑戦的データセットを含む,7つのCFDデータセットの最先端結果を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce a novel masked pre-training technique for graph neural networks (GNNs) applied to computational fluid dynamics (CFD) problems. By randomly masking up to 40\% of input mesh nodes during pre-training, we force the model to learn robust representations of complex fluid dynamics. We pair this masking strategy with an asymmetric encoder-decoder architecture and gated multi-layer perceptrons to further enhance performance. The proposed method achieves state-of-the-art results on seven CFD datasets, including a new challenging dataset of 3D intracranial aneurysm simulations with over 250,000 nodes per mesh. Moreover, it significantly improves model performance and training efficiency across such diverse range of fluid simulation tasks. We demonstrate improvements of up to 60\% in long-term prediction accuracy compared to previous best models, while maintaining similar computational costs. Notably, our approach enables effective pre-training on multiple datasets simultaneously, significantly reducing the time and data required to achieve high performance on new tasks. Through extensive ablation studies, we provide insights into the optimal masking ratio, architectural choices, and training strategies.
- Abstract(参考訳): 本稿では,計算流体力学(CFD)問題に適用したグラフニューラルネットワーク(GNN)のための新しいマスク付き事前学習手法を提案する。
事前学習中に入力メッシュノードの最大40%をランダムにマスキングすることにより、複雑な流体力学の堅牢な表現を学習せざるを得ない。
我々はこのマスキング戦略を非対称エンコーダデコーダアーキテクチャと多層パーセプトロンと組み合わせ、さらなる性能向上を図る。
提案手法は,メッシュ当たり25万ノード以上の3次元頭蓋内動脈瘤シミュレーションの挑戦的データセットを含む,7つのCFDデータセットの最先端結果を実現する。
さらに、このような多様な流体シミュレーションタスクにおいて、モデル性能とトレーニング効率を大幅に改善する。
同様の計算コストを維持しつつ,従来のベストモデルと比較して長期予測精度が最大60%向上したことを示す。
特に,本手法では,複数のデータセットの事前学習を同時に行うことができ,新しいタスクの高パフォーマンス化に必要な時間とデータを大幅に削減できる。
広範囲にわたるアブレーション研究を通じて、最適なマスキング比、アーキテクチャの選択、トレーニング戦略に関する洞察を提供する。
関連論文リスト
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
高分解能CFDシミュレーションは流体挙動や流れパターンに関する貴重な洞察を提供する。
解像度が大きくなると、計算データ要求と時間の増加が比例する。
複雑な流体の流れを学習し,シミュレーションを直接予測するメッシュ非依存のネットワークであるPointSAGEを提案する。
論文 参考訳(メタデータ) (2024-04-06T12:49:09Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Analyzing and Improving the Training Dynamics of Diffusion Models [36.37845647984578]
一般的なADM拡散モデルアーキテクチャにおいて、不均一かつ非効率なトレーニングの原因をいくつか特定し、修正する。
この哲学の体系的な応用は、観測されたドリフトと不均衡を排除し、同じ計算複雑性でネットワークをかなり良くする。
論文 参考訳(メタデータ) (2023-12-05T11:55:47Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
本稿では,GNN(Graph Neural Networks)とエキスパートガイダンスを用いて,航空機モデルのためのCFDメッシュの自動生成を行う機械学習方式を提案する。
曲面分類のための2つの最先端モデルであるPointNet++とPointMLPより優れた3次元分割アルゴリズムを提案する。
また,3次元メッシュ分割モデルからCAD表面への射影予測を共形予測法を用いて提案する手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T14:39:13Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
グラフニューラルネットワークを用いたメッシュベースのシミュレーション学習フレームワークであるMeshGraphNetsを紹介する。
その結果, 空気力学, 構造力学, 布など, 幅広い物理系の力学を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2020-10-07T13:34:49Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。