論文の概要: Leveraging LLM Agents for Translating Network Configurations
- arxiv url: http://arxiv.org/abs/2501.08760v1
- Date: Wed, 15 Jan 2025 12:25:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:46.262388
- Title: Leveraging LLM Agents for Translating Network Configurations
- Title(参考訳): ネットワーク構成翻訳のためのLLMエージェントの活用
- Authors: Yunze Wei, Xiaohui Xie, Yiwei Zuo, Tianshuo Hu, Xinyi Chen, Kaiwen Chi, Yong Cui,
- Abstract要約: 本稿では,Large Language Model (LLM) Agentを用いたネットワーク構成の翻訳のための意図に基づくフレームワークを提案する。
このアプローチのコアとなるのは、構成ファイルをフラグメントに分割し、インテントを抽出し、正確な翻訳を生成する、IntentベースのRetrieval Augmented Generation(IRAG)モジュールです。
実世界のネットワーク構成に対して提案手法を実装し, 実験結果から, 本手法が97.74%の構文正当性を達成し, 翻訳精度に優れることを示す。
- 参考スコア(独自算出の注目度): 13.415360410118613
- License:
- Abstract: Configuration translation is a critical and frequent task in network operations. When a network device is damaged or outdated, administrators need to replace it to maintain service continuity. The replacement devices may originate from different vendors, necessitating configuration translation to ensure seamless network operation. However, translating configurations manually is a labor-intensive and error-prone process. In this paper, we propose an intent-based framework for translating network configuration with Large Language Model (LLM) Agents. The core of our approach is an Intent-based Retrieval Augmented Generation (IRAG) module that systematically splits a configuration file into fragments, extracts intents, and generates accurate translations. We also design a two-stage verification method to validate the syntax and semantics correctness of the translated configurations. We implement and evaluate the proposed method on real-world network configurations. Experimental results show that our method achieves 97.74% syntax correctness, outperforming state-of-the-art methods in translation accuracy.
- Abstract(参考訳): 構成変換はネットワーク操作において重要かつ頻繁なタスクである。
ネットワークデバイスが損傷または時代遅れになった場合、管理者はサービス継続性を維持するためにそれを置き換える必要がある。
代替デバイスは異なるベンダーから派生したもので、シームレスなネットワーク操作を保証するために構成変換を必要とする。
しかし、手動で構成を翻訳することは労働集約的でエラーを起こしやすいプロセスである。
本稿では,Large Language Model (LLM) Agentを用いたネットワーク構成の翻訳のための意図に基づくフレームワークを提案する。
我々のアプローチの中核は、構成ファイルを断片に体系的に分割し、意図を抽出し、正確な翻訳を生成する、IntentベースのRetrieval Augmented Generation (IRAG)モジュールである。
また、翻訳された構成の構文と意味的正当性を検証するための2段階の検証手法も設計する。
提案手法を実世界のネットワーク構成で実装し,評価する。
実験の結果, 構文の精度は97.74%であり, 翻訳精度では最先端の手法よりも優れていた。
関連論文リスト
- AdaMergeX: Cross-Lingual Transfer with Large Language Models via
Adaptive Adapter Merging [96.39773974044041]
言語間移動は、特定の言語における目標タスクを直接微調整することの効果的な代替手段である。
本稿では,適応型アダプティブマージを利用した新しい言語間変換法である$textttAdaMergeX$を提案する。
実験の結果,提案手法は,すべての設定において既存の手法よりも優れ,新しい,効果的な言語間移動をもたらすことが示された。
論文 参考訳(メタデータ) (2024-02-29T07:11:24Z) - Intent Profiling and Translation Through Emergent Communication [30.44616418991389]
インテントプロファイリングと翻訳のためのAIベースのフレームワークを提案する。
ネットワークと対話するアプリケーションがドメイン言語におけるネットワークサービスのニーズを表現するシナリオを考察する。
インテントプロファイリングのための創発的コミュニケーションに基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T07:02:43Z) - CMFDFormer: Transformer-based Copy-Move Forgery Detection with Continual
Learning [52.72888626663642]
コピーモーブ偽造検出は、疑わしい偽画像中の重複領域を検出することを目的としている。
深層学習に基づく複写偽造検出手法が最上位にある。
CMFDFormer という名称の Transformer-style copy-move forgery ネットワークを提案する。
また、CMFDFormerが新しいタスクを処理できるように、新しいPCSD連続学習フレームワークを提供する。
論文 参考訳(メタデータ) (2023-11-22T09:27:46Z) - Shiftable Context: Addressing Training-Inference Context Mismatch in
Simultaneous Speech Translation [0.17188280334580192]
セグメントベース処理を用いたトランスフォーマーモデルは、同時音声翻訳に有効なアーキテクチャである。
トレーニングと推論を通じて一貫したセグメントとコンテキストサイズを確実に維持するために、シフト可能なコンテキストを提案する。
論文 参考訳(メタデータ) (2023-07-03T22:11:51Z) - Cross-Lingual Transfer with Target Language-Ready Task Adapters [66.5336029324059]
MAD-Xフレームワークの拡張であるBAD-Xは、MAD-Xのモジュラリティを犠牲にして転送を改善する。
我々は、ターゲット言語に適応したタスクアダプタを微調整することで、両方の世界を最大限に活用することを目指している。
論文 参考訳(メタデータ) (2023-06-05T10:46:33Z) - Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer
with Fine-tuning Slow and Fast [50.19681990847589]
既存の研究では、1つの(ソース)言語で微調整された多言語事前学習言語モデルが、非ソース言語の下流タスクでもうまく機能していることが示されている。
本稿では、微調整プロセスを分析し、パフォーマンスギャップがいつ変化するかを分析し、ネットワークの重みが全体のパフォーマンスに最も影響するかを特定する。
論文 参考訳(メタデータ) (2023-05-19T06:04:21Z) - Bilingual Synchronization: Restoring Translational Relationships with
Editing Operations [2.0411082897313984]
我々は、最初のターゲットシーケンスを仮定するより一般的な設定を考え、ソースの有効な翻訳に変換する必要がある。
この結果から、一度微調整された1つの汎用的な編集ベースシステムは、これらのタスクに特化して訓練された専用システムと比較、あるいは性能に優れる可能性が示唆された。
論文 参考訳(メタデータ) (2022-10-24T12:25:44Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Unsupervised Word Translation Pairing using Refinement based Point Set
Registration [8.568050813210823]
単語埋め込みの言語間アライメントは、言語間の知識伝達において重要な役割を果たす。
現在の教師なしのアプローチは、言語にまたがる単語埋め込み空間の幾何学的構造における類似性に依存している。
本稿では,バイリンガル単語の共有ベクトル空間への埋め込みを教師なしでマッピングするBioSpereを提案する。
論文 参考訳(メタデータ) (2020-11-26T09:51:29Z) - Retrofitting Structure-aware Transformer Language Model for End Tasks [34.74181162627023]
エンドタスクを容易にするための構造対応トランスフォーマー言語モデルについて検討する。
中層構造学習戦略は構造統合に活用される。
実験結果から, 再構成構造対応トランスフォーマー言語モデルにより, パープレキシティが向上することが確認された。
論文 参考訳(メタデータ) (2020-09-16T01:07:07Z) - Discretization-Aware Architecture Search [81.35557425784026]
本稿では,離散化対応アーキテクチャサーチ(DAtextsuperscript2S)を提案する。
中心となる考え方は、超ネットワークを所望のトポロジの構成に向けることであり、離散化による精度損失がほとんど軽減される。
標準画像分類ベンチマークの実験は、我々のアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2020-07-07T01:18:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。