論文の概要: Nesterov Acceleration for Ensemble Kalman Inversion and Variants
- arxiv url: http://arxiv.org/abs/2501.08779v1
- Date: Wed, 15 Jan 2025 13:01:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:17.984713
- Title: Nesterov Acceleration for Ensemble Kalman Inversion and Variants
- Title(参考訳): カルマンインバージョンと変数のアンサンブルにおけるネステロフ加速
- Authors: Sydney Vernon, Eviatar Bach, Oliver R. A. Dunbar,
- Abstract要約: ネステロフ加速は, 様々な逆問題において, EKIコスト関数の高速化に有効であることを示す。
我々の具体的な実装は、既存のEKI変種アルゴリズムとブラックボックス方式で組むのが明らかに簡単である粒子レベルナッジの形式を採っている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.
- Abstract(参考訳): エンサンブル・カルマン・インバージョン(Ensemble Kalman inversion, EKI)は、逆問題の解法である。
EKIは勾配流を近似し、勾配降下を加速する手法を適用できることが示せる。
そこで,Nesterov 加速は,様々な逆問題に対する EKI コスト関数の高速化に有効であることを示す。
また,EKIの2つの変種に対するネステロフ加速度,無意味カルマン逆変換,アンサンブル変換カルマン逆変換を実装した。
我々の具体的な実装は、既存のEKIの変種アルゴリズムとブラックボックス方式で組むのが明らかに簡単で、追加の計算コストがなく、追加のチューニングハイパーパラメータがない粒子レベルナッジの形式を採っている。
この研究は、勾配に基づく最適化の進歩を勾配のないカルマン最適化の進歩に変換するための将来の研究の道筋を示す。
関連論文リスト
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Acceleration and Implicit Regularization in Gaussian Phase Retrieval [5.484345596034159]
この設定では、Polyak や Nesterov の運動量の暗黙的な正規化による手法が、よい凸降下を保証することを証明している。
実験的な証拠は、これらの手法が実際には勾配降下よりも早く収束していることを示している。
論文 参考訳(メタデータ) (2023-11-21T04:10:03Z) - Revisiting the acceleration phenomenon via high-resolution differential
equations [6.53306151979817]
ネステロフの加速勾配降下(NAG)は、一階アルゴリズムの歴史におけるマイルストーンの1つである。
Lyapunov解析と位相空間表現に基づく$mu$-strongly convex関数のNAGについて検討する。
NAGの暗黙的速度スキームによる高分解能微分方程式の枠組みは完璧であり、勾配補正スキームよりも優れていた。
論文 参考訳(メタデータ) (2022-12-12T04:36:37Z) - Proximal Subgradient Norm Minimization of ISTA and FISTA [8.261388753972234]
反復収縮保持アルゴリズムのクラスに対する2乗近位次数ノルムは逆2乗率で収束することを示す。
また、高速反復収縮保持アルゴリズム (FISTA) のクラスに対する2乗次次数次ノルムが、逆立方レートで収束するように加速されることも示している。
論文 参考訳(メタデータ) (2022-11-03T06:50:19Z) - Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models [134.83964935755964]
ディープラーニングでは、異なる種類のディープネットワークは典型的に異なる補間を必要とし、複数のトライアル後に選択する必要がある。
本稿では,この問題を解消し,モデルトレーニング速度を継続的に改善するために,ADAtive Nesterov運動量変換器を提案する。
論文 参考訳(メタデータ) (2022-08-13T16:04:39Z) - Riemannian accelerated gradient methods via extrapolation [40.23168342389821]
本稿では,勾配降下法から反復が生成された場合,加速されたスキームが最適収束率を比例的に達成することを示す。
本実験は, 新規加速戦略の実用的メリットを検証した。
論文 参考訳(メタデータ) (2022-08-13T10:31:09Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - AdaL: Adaptive Gradient Transformation Contributes to Convergences and
Generalizations [4.991328448898387]
元の勾配を変換したAdaLを提案する。
AdaLは初期の勾配を増幅することで収束を加速し、振動を減衰させ、後に勾配を縮めることで最適化を安定化する。
論文 参考訳(メタデータ) (2021-07-04T02:55:36Z) - Acceleration Methods [57.202881673406324]
まず2次最適化問題を用いて加速法を2つ導入する。
我々は、ネステロフの精巧な研究から始まる運動量法を詳細に論じる。
我々は、ほぼ最適な収束率に達するための一連の簡単な手法である再起動スキームを議論することで結論付ける。
論文 参考訳(メタデータ) (2021-01-23T17:58:25Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
最適化のためのNesterovのAccelerated Gradient(NAG)は、有限のステップサイズを使用する場合の連続時間制限(ノイズなしの運動的ランゲヴィン)よりも優れたパフォーマンスを持つ。
本研究は, この現象のサンプリング法について検討し, 離散化により加速勾配に基づくMCMC法が得られる拡散過程を提案する。
論文 参考訳(メタデータ) (2020-06-16T15:07:37Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。